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Chapter 1

The World of
Problem-solving

1.1 Introduction

“The greatest challenge to any thinker is stating the problem in a way that will
allow a solution.”

– Bertrand Russell

“A great discovery solves a great problem but there is a grain of discovery in
the solution of any problem. Your problem may be modest; but if it challenges
your curiosity and brings into play your inventive faculties, and if you solve it
by your own means, you may experience the tension and enjoy the triumph of
discovery. Such experiences at a susceptible age may create a taste for mental
work and leave their imprint on mind and character for a lifetime.”

– George Pólya

The digital general-purpose computer stands out as one of the most signifi-
cant technological advancements of the past century, marking the beginning of
a transformative era that introduced us to the Internet, smartphones, tablets,
and widespread computerization. To unlock the full potential of these comput-
ers, we rely on programming, which involves creating a sequence of instructions,
or code, that a computer can execute to tackle computational problems. The
language used to write this code is known as a programming language.

Embedded within this code is the concept of an algorithm, which repre-
sents the abstract method for solving a problem. The objective of algorithmic
problem-solving is to develop an effective algorithm that addresses specific com-
putational challenges. While it is not always necessary to write code to appre-
ciate algorithmic problem-solving, engaging in the programming process often
deepens understanding and helps in discovering more efficient and straightfor-

10
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ward solutions to complex issues.
To get an idea about what we are going to discuss in this book, i.e., algo-

rithmic thinking (algorithmic problem solving), let us go through some common
problems you encounter as a student or as a common person.

Problem-1: Suppose that you are back from college, and discover that you
have lost your wallet that is of great sentimental value to you. How do you
regain your lost wallet?

In our daily life, we encounter problems that are big and small. Some are
easy to solve and some are really tough to solve. Some call for a structured
solution, whereas some require an unstructured approach. Some are interesting
and some are not.

If we consider the nature of problems, they range from mathematical to
philosophical. In computing, we deal with algorithmic problems whose solutions
are expressed as algorithms. An algorithm is a set of well-defined steps and
instructions that can be translated into a form, usually known as the code or
program, that is executable by a computing device. You will learn more about
algorithmic problem-solving in Section 1.3.

For the time being, we shall study problem-solving in general. However, we
still want to confine our domain to the logical applications of scientific and math-
ematical methods. Therefore, we will exclude problems such as “How to become
a millionaire in 50 days?”, “How to score full A+’s in examinations?”, and “How
many years do computer scientists take to build a ”human-like” robot?”

Returning to the wallet problem, have you found a solution? If you have,
then something is really missing. First of all, the problem statement is incom-
plete. Where did you actually drop the wallet? Did you assume that it was
dropped at the college? Could it have happened on the way back home? If
the wallet was indeed dropped at the school, where in the school? In the class-
room or playground or the library or somewhere else? These questions must
be answered before you can reach a complete understanding of the problem.
Assumptions should not be made without basis. Irrelevant information (such as
the sentimental value of the wallet) should not get in to the way. Incomplete
information must be sought out. You could only fully understand the prob-
lem after all ambiguities are removed. Then only you should try to solve the
problem. Otherwise, you might end up in a situation where you get stuck.

Now, suppose your wallet was lost in the library. How do you recover the
wallet?

Problem-2: In a circle, a square with side length 2a is inscribed. What is
the area of the circle?

This is a well-stated problem in geometry. After you have fully understood
the problem, you need to devise a plan for solving it. You need to determine
the input (the length of each side of the square) and the output (the area of the
circle). You use suitable notation to represent the data, and you examine the
relationship between the data and the unknown, which will often lead you to a
solution. This may involve the calculation of some intermediate result, like the
length of the diagonal of the square. In this case, you need to make use of the
domain knowledge of basic geometry.
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n = 0: 1

n = 1: 1 1

n = 2: 1 2 1

n = 3: 1 3 3 1

n = 4: 1 4 6 4 1

Table 1.1: Pascal’s triangle

Problem-3: Suppose that you are to ship a wolf, a sheep, and a cabbage
across the river. The boat can only hold the weight of two: you plus another
item. You are the only one who can row the boat. The wolf must not be left
with the sheep alone, or the wolf will eat the sheep. Neither should the sheep
be left alone with the cabbage. How do you get them over to the other side of
the river?

This type of problem involves logic. The required solution is not a computed
value as in Problem 2, but a series of moves that represent the transition from
the initial state (in which all are on one side of the bank) to the final state
(where all are on the opposite side).

Problem-4: Let us consider the well-known Pascal’s triangle shown in Ta-
ble 1.1.

There are 1’s on the boundaries. For the rest, each value is the sum of the
nearest two numbers above it, one on its right and the other on its left. How do
you compute the combination

(
n
k

)
using Pascal’s triangle? How are the values

related to the coefficients in the expansion of (x+ y)n for non-negative n?
Problem-5: Suppose that you are given a rectangular 3 × 5 grid. You are

allowed to move from one intersection to another, governed by the rule that you
can travel only upwards or to the right, along the grid lines. How many paths
are there from each of the intersections to the top-right corner of the grid?

Are the above two problems related? If so, how is this problem related to
the Pascal’s triangle? Knowing that Problems 4 and 5 are related, how would
you use Pascal’s triangle to solve this problem?

This illustrates the often-encountered situation that calls for relating a prob-
lem at hand to one that we have solved before. Figuring out the similarity
among problems, and performing problem transformation, help us to sharpen
our problem-solving ability.

The problems that we discussed offer a quick look into the craft of problem-
solving. The Hungarian mathematician George Pólya (1887-1985) conceptual-
ized the process and captured it in the famous book ”How To Solve It”. In his
book, Pólya enumerates four phases a problem solver has to go through. First,
we need to understand the problem and clarify any doubts about the problem
statement if necessary, as we have discussed in Problem 1. Second, we need to
find the connection between the data and the unknown, to make out a plan for
the solution. Auxiliary problems might be created in the process. Third, we are
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to carry out our plan, checking the validity of each step. Finally, we have to
review the solution.

The four phases are outlined below.

• Phase 1: Understanding the problem.

– What is the unknown? What are the data?
– What is the condition? Is it possible to satisfy the condition? Is the

condition sufficient to determine the unknown? Or is it insufficient?
Or redundant? Or contradictory?

– Draw a figure. Introduce suitable notation.
– Separate the various parts of the condition. Can you write them

down?

• Phase 2: Devising a plan.

– Have you seen it before? Or have you seen the same problem in a
slightly different form?

– Do you know a related problem?
– Look at the unknown! Try to think of a familiar problem having the

same or similar unknown.
– Split the problem into smaller, simpler sub-problems.
– If you cannot solve the proposed problem try to solve first some

related problem. Or solve a more general problem. Or a special case
of the problem. Or solve a part of the problem.

• Phase 3: Carrying out the plan.

– Carrying out your plan of the solution, check each step.
– Can you see clearly that the step is correct?
– Can you prove that it is correct?

• Phase 4: Looking back.

– Can you check the result?
– Can you derive the result differently?
– Can you use the result, or the method, for some other problem?

You should note that asking questions is a running theme in all phases of
the process. In fact, asking questions is the building block of problem-solving.
So, you should start developing the art of asking questions from now on, if you
have not done so.
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1.2 Problem-Solving Strategies
Problem-solving strategies are essential tools that enable you to effectively tackle
a wide range of challenges by providing structured methods to analyze, under-
stand, and resolve problems. These strategies include systematic approaches
such as Trial and Error, Heuristics, Means-Ends Analysis, and Backtracking,
each offering unique benefits and applications. Understanding multiple problem-
solving strategies is crucial as it allows for adaptability and flexibility, ensuring
that one can choose the most efficient method for any given situation. This ver-
satility enhances problem-solving efficiency and improves outcomes by offering
diverse perspectives and potential solutions. Additionally, employing various
strategies enriches cognitive skill development, critical thinking, and creativity.
By integrating these strategies into everyday problem-solving, you can approach
challenges with confidence and resilience, ultimately achieving more successful
and innovative solutions

1.2.1 Importance of Understanding Multiple
Problem-Solving Strategies

Understanding multiple problem-solving strategies is crucial because it equips
individuals with a diverse toolkit to tackle a variety of challenges. Different
problems often require different approaches, and being familiar with multiple
strategies allows for greater flexibility and adaptability. For example, some
problems might be best solved through a systematic trial and error method,
while others might benefit from a more analytical approach like means-ends
analysis. By knowing several strategies, one can quickly switch tactics when one
method does not work, increasing the chances of finding a successful solution.

Additionally, having a collection of problem-solving strategies enhances crit-
ical thinking and creativity. It encourages thinking outside the box and con-
sidering multiple perspectives, which can lead to more innovative and effective
solutions. This broad understanding also helps in recognizing patterns and simi-
larities between different problems, making it easier to apply previous knowledge
to new situations. In both academic and real-world scenarios, this versatility
not only improves problem-solving efficiency but also boosts confidence and
competence in facing various challenges. Some benefits are as follows

• Adaptability: Different problems require different approaches. Under-
standing multiple strategies allows for flexibility and adaptability in problem-
solving.

• Efficiency: Some strategies are more effective for specific types of prob-
lems. Having a repertoire of strategies can save time and resources.

• Improved Outcomes: Diverse strategies offer multiple perspectives and
potential solutions, increasing the likelihood of finding optimal solutions.

• Skill Development: Exposure to various strategies enhances cognitive
skills, critical thinking, and creativity.
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Let us look at some commonly used problem-solving strategies

1.2.2 Trial And Error Problem-Solving Strategy
The trial-and-error problem-solving strategy involves attempting different solu-
tions and learning from mistakes until a successful outcome is achieved. It is a
fundamental method that relies on experimentation and iteration, rather than
systematic or analytical approaches.

Consider the situation where you have forgotten the password to your online
account, and there is no password recovery option available. You decide to use
trial and error to regain access:

1. Initial Attempts: You start by trying passwords you commonly use. For
instance, you might first try ”password123,” ”Qwerty2024,” or ”MyDog-
Tommy.”

2. Learning fromMistakes: None of these initial attempts work. You then
recall that you sometimes use a combination of personal information. You
try variations incorporating your birthdate, pet’s name, or favorite sports
team.

3. Refinement: After several failed attempts, you remember you recently
started using a new format for your passwords, combining a favorite
quote with special characters. You attempted various combinations, such
as”ToBeOrNotToBe!”, ”NeeNeeyaayirikkuka#,” and other combinations.

4. Success: Eventually, through persistent trial and error, you hit upon the
correct password: ”NeeNeeyaayirikkuka#2024.”

In this scenario, trial and error involved systematically trying different potential
passwords, learning from each failed attempt, and refining the approach based
on what you remember about your password habits. This method is practical
when there is no clear pathway to the solution and allows for discovering the
correct answer through persistence and adaptability.

1.2.3 Algorithmic Problem-Solving Strategy
An algorithm is a step-by-step, logical procedure that guarantees a solution to a
problem. It is systematic and follows a defined sequence of operations, ensuring
consistency and accuracy in finding the correct solution.

When baking a cake, you follow a precise recipe, which acts as an algorithm:

1. Gather Ingredients: Measure out 2 cups of flour, 1 cup of sugar, 2 eggs,
1
2 cup of butter, 1 teaspoon of baking powder, and 1 cup of milk.

2. Preheat Oven: Set the oven to 175°C.

3. Mix Ingredients: In a bowl, combine the flour, baking powder, and
sugar. In another bowl, beat the eggs and then mix in the butter and milk.
Gradually combine the wet and dry ingredients, stirring until smooth.
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4. Prepare Baking Pan: Grease a baking pan with butter or cooking spray.

5. Pour Batter: Pour the batter into the prepared pan.

6. Bake: Place the pan in the preheated oven and bake for 30-35 minutes.

7. Check for Doneness: Insert a toothpick into the center of the cake. If
it comes out clean, the cake is done.

8. Cool and Serve: Let the cake cool before serving.

By following this algorithm (the recipe), you systematically achieve the desired
result — a perfectly baked cake.

1.2.4 Heuristic Problem-Solving Strategy
A heuristic is a practical approach to problem-solving based on experience and
intuition. It does not guarantee a perfect solution but provides a good enough
solution quickly, often through rules of thumb or educated guesses. When driv-
ing in a city with frequent traffic congestion, you might use a heuristic approach
to find the fastest route to your destination:

1. Rule of Thumb: You know from experience that certain streets are
typically less congested during rush hour.

2. Current Conditions: You use a traffic app to check current traffic con-
ditions, looking for red or yellow indicators on major roads.

3. Alternative Routes: You consider side streets and shortcuts you have
used before that tend to be less busy.

4. Decision: Based on the app and your knowledge, you decide to avoid the
main highway (which shows heavy congestion) and take a series of back
roads that usually have lighter traffic.

While this heuristic approach does not guarantee that you will find the abso-
lute fastest route, it combines your experience and real-time data to make an
informed, efficient decision, likely saving you time compared to blindly following
the main routes.

1.2.5 Means-Ends Analysis Problem-Solving Strategy
Means-ends analysis is a strategy that involves breaking down a problem into
smaller, manageable parts (means) and addressing each part to achieve the final
goal (ends). It involves identifying the current state, the desired end state, and
the steps needed to bridge the gap between the two.

Imagine you want to plan a road trip from Trivandrum to Kashmir. Here is
how you might use means-ends analysis:
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1. Define the Goal: Your ultimate goal is to drive from Trivandrum to
Kashmir.

2. Analyze the Current State: You start in Trivandrum with your car
ready to go.

3. Identify the Differences: The primary difference is the distance be-
tween Trivandrum and Kashmir, which is approximately 3,700 kilometers.

4. Set Sub-Goals (Means):

• Fuel and Rest Stops: Determine where you will need to stop for
fuel and rest.

• Daily Driving Targets: Break the trip into daily segments, such
as driving 500-600 kilometers per day.

• Route Planning: Choose the most efficient and scenic route, con-
sidering highways, weather conditions, and places you want to visit.

5. Implement the Plan:

• Day 1: Drive from Trivandrum to Bangalore, Karnataka (approx.
720 km). Refuel in Madurai, Tamil Nadu. Overnight stay in Banga-
lore.

• Day 2: Drive from Bangalore to Hyderabad, Telangana (approx.
570 km). Refuel in Anantapur, Andhra Pradesh. Overnight stay in
Hyderabad.

• Day 3: Drive from Hyderabad to Nagpur, Maharashtra (approx. 500
km). Refuel in Adilabad, Telangana. Overnight stay in Nagpur.

• Day 4: Drive from Nagpur to Jhansi, Uttar Pradesh (approx. 580
km). Refuel in Sagar, Madhya Pradesh. Overnight stay in Jhansi.

• Day 5: Drive from Jhansi to Agra, Uttar Pradesh (approx. 290 km).
Refuel in Gwalior, Madhya Pradesh. Overnight stay in Agra. Visit
the Taj Mahal.

• Day 6: Drive from Agra to Chandigarh (approx. 450 km). Refuel
in Karnal, Haryana. Overnight stay in Chandigarh.

• Day 7: Drive from Chandigarh to Jammu (approx. 350 km). Refuel
in Pathankot, Punjab. Overnight stay in Jammu.

• Day 8: Drive from Jammu to Srinagar, Kashmir (approx. 270 km).

6. Adjust as Needed: Throughout the trip, you may need to make adjust-
ments based on traffic, road conditions, or personal preferences.

By breaking down the long journey into smaller, achievable segments and ad-
dressing each part systematically, you can effectively plan and complete the road
trip. This method ensures that you stay on track and make steady progress to-
ward your final destination, despite the complexity and distance of the trip.
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1.2.6 Problem decomposition
In the previous example of traveling from Trivandrum to Kashmir, breaking
down the journey into smaller segments helped you come up with an effective
plan for the completion of the trip. This is the key to solving complex prob-
lems. When the problem to be solved is too complex to manage, break it into
manageable parts known as sub-problems. This process is known as problem
decomposition. Here are the steps in solving a problem using the decomposi-
tion approach:

1. Understand the problem: Develop a thorough understanding of the
problem.

2. Identify the sub-problems: Decompose the problems into smaller parts.

3. Solving the sub-problems: Once decomposition is done, you proceed
to solve the individual sub-problems. You may have to decide upon the
order in which the various sub-problems are to be solved.

4. Combine the solution: Once all the sub-problems have been solved,
you should combine all those solutions to form the solution for the original
problem.

5. Test the combined solution: Finally you ensure that the combined
solution indeed solves the problem effectively.

1.2.7 Other Problem-solving Strategies
Here are some examples of problem-solving strategies that may equally be
adopted to see which works best for you in different situations:

i. Brainstorming
Brainstorming involves generating a wide range of ideas and solutions to
a problem without immediately judging or analyzing them. The goal is to
encourage creative thinking and explore various possibilities.
In a team meeting to improve customer satisfaction, everyone contributes
different ideas, such as enhancing product quality, improving customer
service training, offering loyalty programs, and using customer feedback
to make improvements. These ideas are later evaluated and the best ones
are implemented.

ii. Lateral Thinking
Lateral thinking is about looking at problems from new and unconven-
tional angles. It involves thinking outside the box and challenging estab-
lished patterns and assumptions.
A company facing declining sales of a product might use lateral thinking
to identify new uses for the product or new markets to target, rather than
just trying to improve the existing product or marketing strategy.
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iii. Root Cause Analysis
Root cause analysis involves identifying the fundamental cause of a prob-
lem rather than just addressing its symptoms. The goal is to prevent the
problem from recurring by solving its underlying issues.
If a factory’s production line frequently breaks down, rather than just
repairing the machinery each time, the team conducts a root cause analysis
and discovers that poor maintenance scheduling is the underlying issue.
By implementing a better maintenance plan, they reduce the breakdowns.

iv. Mind Mapping
Mind mapping is a visual tool for organizing information. It helps in
brainstorming, understanding, and solving problems by visually connect-
ing ideas and concepts.
When planning a large event, an organizer creates a mind map with the
event at the center, branching out into categories like venue, catering,
entertainment, invitations, and logistics. Each category further branches
into specific tasks and considerations.

v. SWOT Analysis
SWOT analysis involves evaluating the Strengths, Weaknesses,
Opportunities, and Threats related to a particular problem or decision.
It helps in understanding both internal and external factors that impact
the situation.
A business firm considering a new product launch performs a SWOT anal-
ysis. They identify their strengths (strong brand, good distribution net-
work), weaknesses (limited R&D budget), opportunities (market demand,
potential partnerships), and threats (competition, economic downturn).
This analysis guides their decision-making process.

vi. Decision Matrix
A decision matrix, also known as a decision grid or Pugh matrix, helps
in evaluating and prioritizing a list of options. It involves listing options
and criteria, assigning weights to each criterion, and scoring each option
based on the criteria.
A family deciding on a new car creates a decision matrix with criteria such
as cost, fuel efficiency, safety features, and brand reputation. They rate
each car option against these criteria and calculate a total score to make
an informed choice.

vii. Simulation
Simulation involves creating a model of a real-world system and exper-
imenting with it to understand how the system behaves under different
conditions. It helps in predicting outcomes and identifying the best course
of action.
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Urban planners use traffic simulation software to model the impact of new
road constructions on traffic flow. By testing different scenarios, they can
design the most effective road network to reduce congestion.

viii. Use Experience
The use of experience as a problem-solving strategy involves drawing on
previous knowledge and experiences to address current challenges. This
strategy relies on the idea that similar problems often have similar solu-
tions, and leveraging past experiences can lead to efficient and effective
outcomes.
A company trying to market a new clothing line may consider marketing
tactics they have previously used, such as magazine advertisements, in-
fluencer campaigns, or social media advertisements. By analyzing what
tactics have worked in the past, they can create a successful marketing
campaign again.

These strategies provide various approaches to problem-solving, each suitable
for different types of challenges and contexts.

1.3 Algorithmic problem solving with
computers

In today’s digital era, the computer has become an indispensable part of our
life. Down from performing simple arithmetic right up to accurately determining
the position for a soft lunar landing, we rely heavily on computers and allied
digital devices. Computers are potent tools for solving problems across diverse
disciplines. Problem-solving is a systematic way to arrive at solutions for a given
problem.

1.3.1 The Problem solving process
Let us now explore how computers can be put to solving problems:

1. Understand the problem: Effective problem-solving demands a thor-
ough knowledge of the problem domain. Once you have identified the
problem, its exact nature must be sought and defined. The problem con-
text, objectives, and constraints if any are to be understood properly.
Several techniques can be used to gather information about a problem.
Some of these include conducting interviews and sending questionnaires
to the stakeholders (people who are concerned with the problem). Seg-
menting a big problem into simple manageable ones often helps you to
develop a clear picture of the problem.

2. Formulate a model for the solution: After the problem is thoroughly
understood, the next step is to devise a solution. You should now identify
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the various ways to solve the problem. Brainstorming is one of the most
commonly used techniques for generating a large number of ideas within a
short time. Brainwriting and Mind mapping are two alternative techniques
that you can employ here. The generated ideas are then transformed into a
conceptual model that can be easily converted to a solution. Mathematical
modeling and simulation modeling are two popular modeling techniques
that you could adopt. Whatever the modeling technique is, ensure the
defined model accurately reflects the conceived ideas.

3. Develop an algorithm: Once a list of possible solutions is determined,
they have to be translated into formal representations – algorithms. Ob-
viously, you do not implement all the solutions. So the next step is to
assess the pros and cons of each algorithm to select the best one for the
problem. The assessment is based on considering various factors such as
memory, time, and lines of code.

4. Code the algorithm: The interesting part of the process! Coding! Af-
ter the best algorithm is determined, you implement it as an executable
program. The program or the code is a set of instructions that is more
or less, a concrete representation of the algorithm in some programming
language. While coding, always follow the incremental paradigm – start
with the essential functionalities and gradually add more and more to it.

5. Test the program: Nobody is perfect! Once you are done with the
coding, you have to inspect your code to verify its correctness. This is
formally called testing. During testing, the program is evaluated as to
whether it produces the desired output. Any unexpected output is an
error. The program should be executed with different sets of inputs to
detect errors. It is impossible to test the program with all possible inputs.
Instead, a smaller set of representative inputs called test suite is identified
and if the program runs correctly on the test suite, then it is concluded
that the program will probably be correct for all inputs. You can get
the help of automated testing tools to generate a test suite for your code.
Closely associated with testing is the process of debugging which involves
fixing or resolving the errors (technically called bugs) identified during
testing. Testing and debugging should be repeated until all errors are
fixed.

6. Evaluate the solution: This final step is crucial to ensure that the
program effectively addresses the problem and attains the desired objec-
tives. You have to first define the evaluation criteria. These could include
metrics like efficiency, feasibility, and scalability, a few to mention. The
potential risks that could arise with the program’s deployment are also to
be assessed. Collect quantitative and qualitative feedback from the stake-
holders. Based on the feedback, you have to work on making necessary
improvements to the program. Nevertheless, the refined code should also
be subject to rigorous testing.



22 CHAPTER 1. THE WORLD OF PROBLEM-SOLVING

1.3.2 A case study - The Discriminant calculator
Tell me and I forget. Teach me and I remember. Involve me and I
learn. - Benjamin Franklin

How about going around the problem-solving process a second time? But this
time, with a real problem at hand – determining the discriminant of a quadratic
equation. Roll up your sleeves!

1. Understand the problem: Here we formally define the problem by
specifying the inputs and output.

Input: The three coefficients a, b and c of the quadratic equation
Output: The discriminant value D for the quadratic equation

2. Formulate a model for the solution: Develop a mathematical model
for the solution, that is identify the mathematical expression for the
quadratic equation discriminant D:

D = b2 − 4ac

3. Develop an algorithm: A possible algorithm (actually, a pseudocode)
for our discriminant problem is given below:

1 Start
2 Read(a, b, c)
3 d = b ∗ b− 4 ∗ a ∗ c
4 Print(d)
5 Stop

You will learn more about pseudocodes in Chapter 2.

4. Code the algorithm: The Python program to calculate the discriminant
is as follows:

#Input the coefficients
a = int(input("Enter the value of first coefficient"))
b = int(input("Enter the value of second coefficient"))
c = int(input("Enter the value of third coefficient"))
#Find the discriminant
d = (b**2) - (4*a*c)
#Print the discriminant
print(d)

Completely puzzled about the code? Don’t worry! We will start with
Python programming in Chapter 4.
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5. Test the program: You create a test suite similar to the one shown in
Table 1.2. Each row denotes a set of inputs (a, b, and c) and the expected
output (d) with which the actual output is to be compared.

Table 1.2: A test suite for the discriminant calculator

Sl. No. a b c d
1 10 2 5 -196
2 5 7 1 29
3 2 4 2 0
4 1 1 1 -3
5 3 2 5 -56
6 2 8 2 48

1.4 Conclusion
In this chapter, we’ve explored the diverse landscape of problem-solving, high-
lighting the importance of understanding and applying various strategies. By
delving into methods like trial and error, heuristics, and means-ends analysis,
we’ve gained insight into how different approaches can be leveraged depending
on the nature of the problem at hand. The discussion on algorithmic problem-
solving has further illustrated how structured processes can be applied, partic-
ularly when using computers to tackle complex issues.

The case study on the Discriminant calculator effectively bridges theory with
practice, showing that these problem-solving strategies are not just abstract
concepts but have real-world applications. This chapter provides a founda-
tional toolkit for tackling a variety of challenges and enhancing your confidence,
creativity, and precision in both computational and practical scenarios.

1.5 Exercises
1. A bear, starting from the point P, walked one mile due south. Then he

changed direction and walked one mile due east. Then he turned again
to the left and walked one mile due north, and arrived at the point P he
started from. What was the color of the bear?

2. Two towns A and B are 3 kilometers apart. It is proposed to build a new
school serving 100 students in town A and 50 students in town B. How
far from town A should the school be built if the total distance travelled
by all 150 students is to be as small as possible?

3. A traveller arrives at an inn. He has no money but only a silver chain
consisting of 6 links. He uses one link to pay for each day spent at the
inn, but the innkeeper agrees to accept no more than one broken link.
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How should the traveller cut up the chain in order to settle accounts with
the innkeeper on a daily basis?

4. What is the least number of links that have to be cut if the traveller stays
100 days at the inn and has a chain consisting of 100 links? What is the
answer in the general case (n days and n links)?

5. The minute and hour hands of a clock coincide exactly at 12 o’clock. At
what time later do they first coincide again?

6. Six glasses are in a row, the first three full of juice, the second three empty.
By moving only one glass, can you arrange them so that empty and full
glasses alternate?

7. You throw away the outside and cook the inside. Then you eat the outside
and throw away the inside. What did you eat?

8. Rearrange the letters in the words new door to make one word.

9. A mad scientist wishes to make a chain out of plutonium and lead pieces.
There is a problem, however. If the scientist places two pieces of plutonium
next to each other, BOOM! The question is, in how many ways can the
scientist safely construct a chain of length n?

10. Among 12 ball bearings, one is defective, but it is not known if it is
heavier or lighter than the rest. Using a traditional balance (with two
pans hanging down the opposite ends of a lever supported in the middle),
how do you determine which is the defective ball bearing, and whether it
is heavier or lighter than the others, within three attempts?



Bibliography

[1] George Pólya and John Conway, How to Solve It: A New Aspect of Math-
ematical Method, Princeton University Press, 2014.

[2] Maureen Sprankle and Jim Hubbard, Problem Solving and Programming
Concepts, Pearson, 2011.

[3] Donald E. Knuth, The Art of Computer Programming (Volume 1),
Addison-Wesley, 1997.

[4] Nell Dale and John Lewis, Computer Science Illuminated, Jones and
Bartlett Publishers, 2019.

[5] R G Dromey, How To Solve It By Computer, Pearson, 2008.

25



Chapter 2

Algorithms, pseudocodes,
and flowcharts

“When you choose an algorithm, you choose a point of view”
– Anonymous

“An Algorithm is a storytellers’ script while Pseudocode is the builders’ blueprint”
– Anonymous

2.1 Algorithms and pseudocodes
An algorithm describes a systematic way of solving a problem. It is a step-by-
step procedure that produces an output when given the necessary inputs. An
algorithm uses pure English phrases or sentences to describe the solution to a
problem. A Pseudocode is a high-level representation of an algorithm that
uses a mixture of natural language and programming language-like syntax. It
is more structured than an algorithm in that it uses mathematical expressions
with English phrases to capture the essence of a solution concisely. You can also
use programming constructs (See Section 2.1.2 below) in a pseudocode which
are not permitted in an algorithm in a strict sense.

As the name indicates, pseudocode is not a true program and thus is inde-
pendent of any programming language. It is not executable rather helps you
understand the flow of an algorithm.

Confused between algorithms and pseudocodes? Let us take an example. We
will now write an algorithm and a pseudocode to evaluate an expression, say
d = a+ b ∗ c. Here a, b, c, and d are known as variables. Simply put, a variable
is a name given to a memory location that stores some data value. First, let us
look at the algorithm for the expression evaluation.

26
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Evaluate-Algo
1 Start
2 Read the values of a, b and c.
3 Find the product of b and c.
4 Store the product in a temporary variable temp.
5 Find the sum of a and temp.
6 Store the sum in d.
7 Print the value of d.
8 Stop.

The following is the pseudocode to evaluate the same expression.

Evaluate-Pseudo
1 Start
2 Read(a, b, c)
3 d = a+ b ∗ c
4 Print(d)
5 Stop

In a pseudocode, Read is used to read input values. Print is used to print
a message. The message to be printed should be enclosed in a pair of double
quotes. For example,

Print(“Hello folks!!”)

prints

Hello folks!!

To print the value of a variable, just use the variable name (without quotes). In
the above example, Print(d) displays the value of the variable d.

Although pseudocode and algorithm are technically different, these words
are interchangeably used for convenience.

2.1.1 Why pseudocodes?
Wondering why pseudocodes are important? Here are a few motivating reasons:

1. Ease of understanding: Since the pseudocode is programming language
independent, novice developers can also understand it very easily.

2. Focus on logic: A pseudocode allows you to focus on the algorithm’s logic
without bothering about the syntax of a specific programming language.

3. More legible: Combining programming constructs with English phrases
makes pseudocode more legible and conveys the logic precisely.

4. Consistent: As the constructs used in pseudocode are standardized, it is
useful in sharing ideas among developers from various domains.
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Table 2.1: Relational operators

Operator Meaning
> greater than
< less than
== equal to
>= greater than or equal to
<= less than or equal to
! = not equal to

5. Easy translation to a program: Using programming constructs makes
mapping the pseudocode to a program straightforward.

6. Identification of flaws: A pseudocode helps identify flaws in the solution
logic before implementation.

2.1.2 Constructs of a pseudocode
A good pseudocode should follow the structured programming approach. Struc-
tured coding aims to improve the readability of pseudocode by ensuring that
the execution sequence follows the order in which the code is written. Such a
code is said to have a linear flow of control. Sequencing, selection, and repeti-
tion (loop) are three programming constructs that allow for linear control flow.
These are also known as single entry – single exit constructs.

R When it is said that “the pseudocode is executed”, it just means that
the pseudocode instructions are interpreted. It doesn’t denote the actual
execution on a computer.

In the sequence structure, all instructions in the pseudocode are executed
(exactly) once without skipping any. On the other hand, with selection and
loop structures, it is possible to execute certain instructions repeatedly or even
skip some. In such structures, the decision as to which statements are to be
executed or whether the execution should repeat will be determined based on
the outcome of testing a condition. We use special symbols called relational
operators to write such conditions. The various relational operators are listed
in Table 2.1. It is also possible to combine two or more conditions using logical
operators like “AND” (&&), “OR” (||). Eg: a > b AND a > c.

2.1.2.1 Sequence

This is the most elementary construct where the instructions of the algorithm
are executed in the order listed. It is the logical equivalent of a straight line.
Consider the code below.
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S1
S2
S3
.
.
Sn

The statement S1 is executed first, which is then followed by statement S2, so
on and so forth, Sn until all the instructions are executed. No instruction is
skipped and every instruction is executed only once.

2.1.2.2 Decision or Selection

A selection structure consists of a test condition together with one or more
blocks of statements. The result of the test determines which of these blocks
is executed. There are mainly two types of selection structures, as discussed
below:

A if structure

There are three variations of the if-structure:

A.1 if structure

The general form of this structure is:

if (condition)
true_instructions

endif

If the test condition is evaluated to True, the statements denoted by true_instructions
are executed. Otherwise, those statements are skipped.

Example 2.1. The pseudocode CheckPositive(x) checks if an input value x
is positive.

CheckPositive(x)
1 if (x > 0)
2 Print(x,“ is positive”)
3 endif

A.2 if else structure

The general form is given below:
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if (condition)
true_instructions

else
false_instructions

endif

This structure contains two blocks of statements. If the test condition is met,
the first block (denoted by true_instructions) is executed and the algorithm
skips over the second block (denoted by false_instructions). If the test
condition is not met, the first block is skipped and only the second block is
executed.

Example 2.2. The pseudocode PersonType(age) checks if a person is a major
or not.

PersonType(age)
1 if (age >= 18)
2 Print(“You are a major”)
3 else
4 Print(“You are a minor”)
5 endif

A.3 if else if else structure

When a selection is to be made out of a set of more than two possibilities, you
need to use the if else if else structure, whose general form is given below:

if (condition1)
true_instructions1

else if (condition2)
true_instructions2

else
false_instructions

endif

Here, if condition1 is met, true_instructions1 will be executed. Else
condition2 is checked. If it evaluates to True, true_instructions2 will be
selected. Otherwise false_instructions will be executed.

Example 2.3. The pseudocode CompareVars(x, y) compares two variables x
and y and prints the relation between them.
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CompareVars(x, y)
1 if (x > y)
2 Print(x,“is greater than”,y)
3 else if (x < y)
4 Print(y,“is greater than”,x)
5 else
6 Print(“The two values are equal”)
7 endif

There is no limit to the number of else if statements, but in the end, there
has to be an else statement. The conditions are tested one by one starting from
the top, proceeding downwards. Once a condition is evaluated to be True, the
corresponding block is executed, and the rest of the structure is skipped. If
none of the conditions are met, the final else part is executed.

B Case Structure
The case structure is a refined alternative to if else if else structure. The
pseudocode representation of the case structure is given below.

The general form of this structure is:

caseof (expression)
case 1 value1:

block1

case 2 value2:
block2

...
default :

default_block
endcase

The case structure works like this: First, the value of expression (you can
also have a single variable in the place of expression) is compared with value1.
If there is a match, the first block of statements denoted as block1 will be
executed. Typically, each block will have a break at the end which causes the
case structure to be exited.

If there is no match, the value of the expression (or of the variable) is com-
pared with value2. If there is a match here, block2 is executed and the struc-
ture is exited at the corresponding break statement. This process continues
until either a match for the expression value is found or until the end of the
cases is encountered. The default_block will be executed when the expres-
sion does not match any of the cases.

If the break statement is omitted from the block for the matching case, then
the execution continues into subsequent blocks even if there is no match in the
subsequent blocks, until either a break is encountered or the end of the case
structure is reached.
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Example 2.4. The pseudocode PrintDirection(dir) prints the direction
name based on the value of a character called dir.

PrintDirection(dir)
1 caseof (dir)
2 case ‘N’:
3 Print(“North”)
4 break
5 case ‘S’:
6 Print(“South”)
7 break
8 case ‘E’:
9 Print(“East”)

10 break
11 case ‘W’:
12 Print(“West”)
13 break
14 default :
15 Print(“Invalid direction code”)
16 endcase

2.1.2.3 Repetition or loop

When a certain block of instructions is to be repeatedly executed, we use the
repetition or loop construct. Each execution of the block is called an iteration
or a pass. If the number of iterations (how many times the block is to be
executed) is known in advance, it is called definite iteration. Otherwise, it
is called indefinite or conditional iteration. The block that is repeatedly
executed is called the loop body. There are three types of loop constructs as
discussed below:

A while loop
A while loop is generally used to implement indefinite iteration. The general
form of the while loop is as follows:

while (condition)
true_instructions

endwhile

Here, the loop body (true_instructions) is executed repeatedly as long as
condition evaluates to True. When the condition is evaluated as False, the
loop body is bypassed.

B repeat-until loop
The second type of loop structure is the repeat-until structure. This type of
loop is also used for indefinite iteration. Here the set of instructions constituting
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the loop body is repeated as long as condition evaluates to False. When
the condition evaluates to True, the loop is exited. The pseudocode form of
repeat-until loop is shown below.

repeat
false_instructions

until (condition)

There are two major differences between while and repeat-until loop con-
structs:

1. In the while loop, the pseudocode continues to execute as long as the
resultant of the condition is True; in the repeat-until loop, the looping
process stops when the resultant of the condition becomes True.

2. In the while loop, the condition is tested at the beginning; in the repeat-
until loop, the condition is tested at the end. For this reason, the while
loop is known as an entry controlled loop and the repeat-until loop is
known as an exit controlled loop.

You should note that when the condition is tested at the end, the instructions
in the loop are executed at least once.

C for loop
The for loop implements definite iteration. There are three variants of the for
loop. All three for loop constructs use a variable (call it the loop variable) as a
counter that starts counting from a specific value called begin and updates the
loop variable after each iteration. The loop body repeats execution until the
loop variable value reaches end . The first for loop variant can be written in
pseudocode notation as follows:

for var = begin to end
loop_instructions

endfor

Here, the loop variable (var) is first assigned (initialized with) the value begin.
Then the condition var <= end is tested. If the outcome is True, the loop
body is executed. After the first iteration, the loop variable is incremented
(increased by 1). The condition var <= end is again tested with the updated
value of var and the loop is entered (loop body is executed), if the condition
evaluates to True. This process of updating the loop variable after an iteration
and proceeding with the execution if the condition (tested with the updated
value of the loop variable) evaluates to True continues until the counter value
becomes greater than end . At that time, the condition evaluates to False and
the loop execution stops.

In the second for loop variant, whose pseudocode syntax is given below, the
loop variable is decremented (decreased by 1) after every iteration. And the
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condition being tested is var >= end. Here, begin should be greater than or
equal to end , and the loop exits when this condition is violated.

for var = begin downto end
loop_instructions

endfor

It is also possible to update the loop variable by an amount other than 1 after
every iteration. The value by which the loop variable is increased or decreased
is known as step. In the pseudocode shown below, the step value is specified
using the keyword by .

for var = begin to end by step
loop_instructions

endfor

Table 2.2 lists some examples of for loops. In these examples, var is the loop
variable.

Table 2.2: for loop examples

Loop construct Description Values taken by var

for var = 1 to 10 var gets incremented by 1 till it reaches 10 1, 2, · · · 9, 10

for var = 10 downto 1 var gets decremented by 1 till it reaches 1 10, 9, · · · 2, 1

for var = 2 to 20 by 2 var gets increased by 2 till it reaches 20 2, 4, · · · 18, 20

for var = 20 downto 2 by 2 var gets decreased by 2 till it reaches 2 20, 18, · · · 4, 2

2.2 Flowcharts
A flowchart is a diagrammatic representation of an algorithm that depicts how
control flows in it. Flowcharts are composed of various blocks interconnected
by flow-lines. Each block in a flowchart represents some stage of processing in
the algorithm. Different types of blocks are defined to represent the various
programming constructs of the algorithm.

Flow lines indicate the order in which the algorithm steps are executed. The
flow lines entering a block denote data (or control) flow into the block and the
flow lines emerging from a block denote data (control) outflow. Most blocks
have only single incoming and outgoing flow lines. The exception is for blocks
representing selection and loop constructs. Such blocks have multiple exits, one
for each possible outcome of the condition being tested and each such outcome
is called a branch.

Table 2.3 lists some commonly used flowchart symbols and their descriptions.
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Table 2.3: The different flowchart symbols

Flowchart symbol Description

Flattened ellipse indicates the start and end of a
module.

Rectangle is used to show arithmetic calculations.

Parallelogram denotes an input/output operation.

Diamond indicates a decision box with a condition
to test. It has two exits. One exit leads to a block
specifying the actions to be taken when the tested
condition is True and the other exit leads to a
second block specifying the actions for False case.

Rectangle with vertical side-lines denotes a
module. A module is a collection of statements
written to achieve a task. It is known by the name
function in the programming domain.

count
B

S

A

Hexagon denotes a for loop. The symbol shown
here is the representation of the loop:
for count = A to B by S.

Flowlines are indicated by arrows to show the
direction of data flow. Each flowline connects two
blocks.

This indicates an on-page connector. This is used
when one part of a long flowchart is drawn on one
column of a page and the other part in the other
column of the same page.

This indicates an off-page connector. This is used
when the flowchart is very long and spans multiple
pages.
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2.3 Solved problems - Algorithms and
Flowcharts

Problem 2.1 To find simple interest.
Solution:

See Figure 2.1 for the algorithm and flowchart.

SimpleInterest
1 Start
2 Read(principal , rate, years)
3 SI = (principal ∗ rate ∗ years)/100
4 Print(SI )
5 Stop.

Start

Read(principal , rate, years)

SI = (principal ∗ rate ∗ years)/100

Print SI

Stop

Figure 2.1: To find simple interest

• Read the principal amount, interest rate, and period values. Store them
as three variables: principal, rate, and years respectively.

• Multiply principal, rate and years and divide the result by 100 to obtain
the simple interest, which is stored in the variable SI.

– Division by 100 is necessary since rate is input as a percentage(7%
instead of 0.07).

• Finally, the value of SI is displayed on the terminal.

Problem 2.2 To determine the larger of two numbers.
Solution:

See Figure 2.2 for the algorithm and flowchart.
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LargerTwo
1 Start
2 Read(a, b)
3 if (a > b)
4 large = a
5 else
6 large = b
7 endif
8 Print(large)
9 Stop.

Start

Read(a, b)

a > b?

large = alarge = b

Print(large)

Stop

TrueFalse

Figure 2.2: To find the larger of two numbers

• First, read two numbers from the user and store them in the variables a
and b respectively.

• Next, compare these two numbers using an if-else statement.

• Check whether a is greater than b.

– If this condition is True, assign the value of a to the variable large.

• Otherwise, the control moves to the else part, where the value of b is
assigned to large.

• Finally, the value of large is printed, which is the largest of the two num-
bers.

Problem 2.3 To determine the smallest of three numbers.
Solution:

See Figure 2.3 for the algorithm and flowchart.
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SmallestThree
1 Start
2 Read(a, b, c)
3 if (a < b)
4 small = a
5 else
6 small = b
7 endif
8 if (c < small)
9 small = c
10 endif
11 Print(small)
12 Stop.

Start

Read(a, b, c)

a < b?

small = asmall = b

c < small?

small = c

Print(small)

Stop

TrueFalse

True

False

Figure 2.3: To find the smallest of three numbers

• Similar to the previous problem, input three numbers and store them in
variables a, b, and c respectively.

• To solve this problem, first find the smaller of the two numbers a and b
and then compare that smaller number with the third variable c.

• The first if statement determines the smaller between a and b and keeps
it in small.

• Using a second if statement, check whether c is less than small.

– If so, the value of c is assigned to small.

• Finally, small is printed.

Problem 2.4 To determine the entry-ticket fare in a zoo based on age as follows:
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Age Fare
< 10 7

>= 10 and < 60 10
>= 60 5

Solution:
See Figure 2.4 for the pseudocode and flowchart.

TicketFare
1 Start
2 Read(age)
3 if (age < 10)
4 fare = 7
5 else if (age < 60)
6 fare = 10
7 else
8 fare = 5
9 endif
10 Print(fare)
11 Stop

Start

Read(age)

age < 10?

fare = 7

age < 60?

fare = 5 fare = 10

Print(fare)

Stop

TrueFalse

TrueFalse

Figure 2.4: To determine the entry fare in a zoo

• Accept age from the user.

• First check whether age is less than 10. If so, fare is assigned the value 7.

• If the condition is False, the next condition is checked. If age >= 10 and
age < 60, fare gets the value 10.

• If the above condition also turns out to be False (i.e. age >= 60), else
statement is executed, and fare gets the value 5.

• Finally, the fare value is printed.

Problem 2.5 To print the colour based on a code value as follows:
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Grade Message
R Red
G Green
B Blue

Any other value Wrong code
Solution:

Figure 2.5 for the pseudocode and flowchart.

PrintColour
1 Start
2 Read(code)
3 caseof (code)
4 case ‘R’:
5 Print(“Red”)
6 break
7 case ‘G’:
8 Print(“Green”)
9 break

10 case ‘B’:
11 Print(“Blue”)
12 break
13 default :
14 Print(“Wrong code”)
15 endcase
16 Stop

Start

Read(code)

caseof
code

Print(“Green”)

Print(“Blue”)

Print(“Red”)

Print(“Wrong code”)

Stop

‘R’ ‘G’ ‘B’ default

Figure 2.5: To print colors based on a code value
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• Read the code (a character constant) from the user.

• The value of code is matched against a number of case constants (R, G, B
as per the question).

• If the code is ’R’, the statements associated with it are executed until the
break statement is encountered (i.e. ”Red” is printed here). A break
statement moves the control out of the case structure.

• A similar execution happens if the value of code is G or B. If code is ’G’,
”Green” is printed, and ”Blue” is printed if code is ’B’.

• If the user inputs any other character other than ’R’, ’G’, or ’B’, the
default statement is executed.

Problem 2.6 To print the numbers from 1 to 50 in descending order.

Solution:
See Figure 2.6 for pseudocode and flowchart.

PrintDown
1 Start
2 for count = 50 downto 1
3 Print(count)
4 endfor
5 Stop

Start

count
1

-1
50

Print(count)

count

Stop

Figure 2.6: To print numbers in descending order

• The count variable is initially assigned 50 and the condition, count >= 1
(i.e. 50 >= 1) is checked.

• Since it evaluates to True, print statement is executed (Body of for loop
in this question).

• ‘downto’ decrements the value of count by 1 i.e. count now becomes 49.
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• The condition, count >= 1 is checked, and since it evaluates to True,
the body of the loop is executed (49 is printed), and again count is decre-
mented.

• The above step repeats until count becomes 0 (in which case, the condition
evaluates to False) and you stop. The sequence thus printed is 50 49 48
· · · 1.

Problem 2.7 To find the factorial of a number.
Solution:The factorial of a number n is defined as n! = n×n−1×· · · · · ·×2×1.
See Figure 2.7 for the pseudocode and flowchart.

Factorial
1 Start
2 Read(n)
3 fact = 1
4 for var = n downto 1
5 fact = fact ∗ var
6 endfor
7 Print(fact)
8 Stop

Start

Read(n)

fact = 1

var
1

-1
n

fact = fact ∗ var

var

Print(fact)

Stop

Figure 2.7: To find the factorial of a number

• Read n from the user, whose factorial is to be calculated.

• Initialize fact to 1

• Write a loop, with the loop control variable var initialized to n.

– For each iteration of the loop, multiply the value inside fact variable
with var and store it infact.
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• This is continued until the value of var becomes greater than or equal to
1, with var being decremented by 1 after every iteration.

• At the end of all iterations, fact is printed.

Problem 2.8 To determine the largest of n numbers.

Solution:See Figure 2.8 for pseudocode and flowchart.

LargeN
1 Start
2 Read(n,num)
3 large = num
4 for count = 1 to n− 1
5 Read(num)
6 if (num > large)
7 large = num
8 endif
9 endfor
10 Print(large)
11 Stop

‘

Start

Read(n,num)

large = num

count
n− 1

1
1

Read(num)

num > large?

large = num

count

Print(large)

False

Stop

True

Figure 2.8: To find the largest of n numbers

• Read n from the user.

• Along with that, read a single number num from the user and assign a
variable large with num. That is the first one among the set of input
integers is assumed to be the largest.

• Initialize a loop, with the loop control variable count being assigned the
value of 1.
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• During every iteration of the loop,

– obtain a number from the user and keep it in num variable
– num is checked against large
– If num > large, update largeto num

• This is repeated as long as the value of count is less than or equal to n -
1.

– You need to iterate the loop only n - 1 times since you received the
first integer before entering the loop.

• After all iterations, the largest value is displayed.

Problem 2.9 To determine the average age of students in a class. The user
will stop giving the input by giving the age as 0.

Solution:See Figure 2.9 for pseudocode and flowchart.

AverageAgev1
1 Start
2 sum = 0
3 count = 0
4 Read(age)
5 while (age!=0)
6 sum = sum + age
7 count = count + 1
8 Read(age)
9 endwhile
10 average = sum/count
11 Print(average)
12 Stop

Start

sum = 0
count = 0

Read(age)

while
age!=0

sum = sum + age
count = count + 1

average = sum/count

Print(average)

Stop

True

False

Figure 2.9: To determine the average age using while loop

• Initialize the variables sum and count to 0.

• Read the age of the first student and keep it in age variable.
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• Write a while loop that will run until age is not equal to zero.

• In every iteration,

– add the age value to sum and increment count by 1
– read the next value of age

• After getting out of the loop, determine the average age by dividing sum
by count.

• Print the average value.

Problem 2.10 Redo Problem 2.9 using repeat-until loop construct.

Solution: See Figure 2.10 for flowchart and pseudocode.

AverageAgev2
1 Start
2 sum = 0
3 count = 0
4 Read(age)
5 repeat
6 sum = sum + age
7 count = count + 1
8 Read(age)
9 until (age == 0)
10 average = sum/count
11 Print(average)
12 Stop

Start

sum = 0
count = 0

Read(age)

sum = sum + age
count = count + 1

repeat

Read(age)

until
age == 0

average = sum/count

Print(average)

Stop

True

False

Figure 2.10: To determine the average age using repeat until loop
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• Initialize sum, count to 0.

• Read age from the user.

• Write the repeat-until loop:

• Inside the loop:

– add age value to sum
– increment Count
– read the next age value

• Continue the loop until the user inputs a 0 for age.

• After getting out of the loop, determine the average age by dividing sum
by count.

• Print the average value.

Problem 2.11 To find the average height of boys and average height of girls in
a class of n students.

Solution: See Figure 2.11.

AverageHeight
1 Start
2 Read(n)
3 btotal = 0
4 bcount = 0
5 gtotal = 0
6 gcount = 0
7 for var = 1 to n
8 Read(gender , height)
9 if (gender == ‘M ’)
10 btotal = btotal + height
11 bcount = bcount + 1
12 else
13 gtotal = gtotal + height
14 gcount = gcount + 1
15 endif
16 endfor
17 bavg = btotal/bcount
18 gavg = gtotal/gcount
19 Print(bavg , gavg)
20 Stop
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Start

Read(n)

bcount = 0
gcount = 0
btotal = 0
gtotal = 0

var
n

1
1

Read(gender , height)

gender == ‘M ’?

gtotal = gtotal + height
gcount = gcount + 1

btotal = btotal + height
bcount = bcount + 1

var

bavg = btotal/bcount
gavg = gtotal/gcount

Print(gavg , bavg)

Stop

TrueFalse

Figure 2.11: To find the average height of boys and girls
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• Input n from the user.

• Define variables btotal, bcount, gtotal, and gcount to store the total height
of boys, number of boys, total height of girls and number of girls respec-
tively. Initialize all the four variables to 0

• Write a loop that prompts the user for the relevant inputs for all the n
students.

• During each iteration:

– Read gender and height
– If the gender is ’M ’, add the input height to btotal and increment

bcount
– Otherwise, add the input height to gtotal and increment gcount

• After getting out of the loop, determine the average height of the boys,
bavg by dividing btotal with bcount. In a similar way, calculate the average
height of the girls, gavg by dividing gtotal with gcount.

• Finally print the average values.

2.4 Conclusion
In this chapter, we’ve explored the foundational elements of algorithms,
flowcharts, and pseudocode — the essential tools in the development of effi-
cient and effective programs. Algorithms provide a clear, step-by-step approach
to problem-solving, while flowcharts offer a visual representation that aids in
understanding the logical flow. Pseudocode serves as an intermediary step,
bridging the gap between the abstract algorithm and the actual code, making
it easier to translate ideas into executable code. Together, these tools help in
breaking down complex problems into manageable parts, ensuring clarity and
precision in programming. Mastering these concepts is crucial for anyone aim-
ing to develop robust software solutions. As you move forward, these skills will
serve as a solid foundation for tackling more complex problems.

2.5 Exercises
1. Write algorithms for the following:

1. to find the area and circumference of a circle.
2. to find the area of a triangle given its three sides.
3. to find the area and perimeter of a rectangle.
4. to find the area of a triangle given its length and breadth.
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2. If the three sides of a triangle are input, write an algorithm to check
whether the triangle is isosceles, equilateral, or scalene.

3. Write a switch statement that will examine the value of flag and print
one of the following messages, based on the value assigned to the flag.

Flag value Message
1 HOT
2 LUKE WARM
3 COLD

Any other value OUT OF RANGE

4. Write algorithms for the following:

(a) to display all odd numbers between 1 and 500 in descending order.
(b) to compute and display the sum of all integers that are divisible by

6 but not by 4 and that lie between 0 and 100.
(c) to read a value, and do the following: If the number is even, halve

it; if it’s odd, multiply by 3 and add 1. Repeat this process until the
value is 1, printing out each value.

5. Write an algorithm that inputs two values a and b and that finds ab. Use
the fact that ab is multiplying a with itself b times.

6. You visit a shop to buy a new mobile. In connection with the festive
season, the shop offers a 10% discount on all mobiles. In addition, the
shop also gives a flat exchange price of | 1000 for old mobiles. Draw a
flowchart to input the original price of the mobile and print its selling
price. Note that all customers may not have an old mobile for exchange.

7. Draw flowcharts for the following:

(a) to find the volume of a hemisphere by inputting the radius.
(b) to find the profit or loss incurred by getting the cost price and selling

price of an item. Note that you are not asked to determine whether
profit or loss is incurred but rather the value of profit or loss. Assume
cost price ̸= selling price.

(c) to find the average of a list of numbers entered by the user. The user
will stop the input by giving the value −999.
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Chapter 3

Foundations of computing

“The problem of computing is not about speed, it’s about understanding.”
– Donald E Knuth

3.1 Introduction
The computer is an advanced electronic device that takes raw data as input from
the user and processes this data under the control of a set of instructions (called
program) and gives the result (output) and saves the output for future use. It
can perform numerical (arithmetic) and non-numerical (logical) calculations.

Figure 3.1: A typical computer architecture
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3.2 Architecture of a computer
A typical computer architecture comprises of three main components:

1. Input/Output (I/O) Unit,

2. Central Processing Unit (CPU), and

3. Memory Unit.

The I/O unit consists of the input unit and output devices. The input devices
accept data from the user, which the CPU processes. The output devices trans-
fer the processed data (information) to the user. The memory unit is used to
store the input data, the instructions required to process the input, and also the
output information. Figure 3.1 illustrates a typical architecture of a computer.

3.2.1 Input/output unit
The user interacts with the computer via the I/O unit.

3.2.1.1 Input devices

Input devices allow users to input data into the computer for processing. They
are necessary to convert the input data into a form that can be understood by
the computer. The data input to a computer can be in the form of text, audio,
video, etc. Input devices are classified into two categories:

1. Human data entry devices – the user enters data into the computer by
typing or pointing a device to a particular location. Some examples are

(a) Keyboard – the most common typing device.
(b) Mouse – the most common pointing device. You move the mouse

around on a mouse pad and a small pointer called cursor follows
your movements on the computer screen.

(c) Track ball – an alternative to a mouse which has a ball on the top.
The cursor on the computer screen moves in the direction in which
the ball is moved.

(d) Joystick – has a stick whose movement determines the cursor posi-
tion.

(e) Graphics tablet – converts hand-drawn images into a format suitable
for computer processing.

(f) Light pen – can be used to “draw” on the screen or to select options
from menus presented on the screen by directly pointing the pen on
the screen.

2. Source data entry devices –They use special equipment to collect data at
the source, create machine-readable data, and feed them directly into the
computer. This category comprises:
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(a) Audio input devices – It uses human voice or speech to give input.
Microphone is an example.

(b) Video input devices – They accept input in the form of video or
images. Video cameras, webcams are examples.

(c) Optical input devices – They use optical technology (light source) to
input the data into computers. Some common optical input devices
are scanners and bar code readers.

ROther examples include Optical Character Recogniser (OCR),
Magnetic Ink Character Recogniser (MICR), and Optical Mark
Recogniser (OMR).

3.2.1.2 Output devices

An output device takes processed data from the computer and converts them
into information that can be understood by humans. The output could be on
paper or a film in a tangible form or an intangible form like audio, video, etc.
Output devices are classified as follows:

1. Hard copy devices – The output obtained in a tangible form on paper
or any surface is called hard copy output. The hard copy can be stored
permanently and is portable. The hard copy output can be read or used
without a computer. Examples in this category include:

(a) Printer – prints information on paper. The information could be
textual or even images. Drum printers, laser printers, and inkjet
printers are some commonly used printer types.

(b) Plotter – used to produce very large drawings on paper sizes up to
A0 (16 times as big as A4). A plotter draws onto the paper using
very fine pens. Flatbed plotters and drum plotters are two types of
plotters.

(c) COM (Computer Output on Microfilm) – stores the output (mostly
as images) on a microfilm.

2. Soft Copy Devices – Generates a soft copy of the output (output obtained
in an intangible form) on a visual display, audio unit, or video unit. The
soft copy can be stored and sent via e-mail to other users. It also allows
corrections to be made. The soft copy output requires a computer to be
read or used. This category comprises:

(a) Monitor – the primary output device of a computer. Monitors can be
of two types: monochrome (black and white) or color. It forms images
from tiny dots, called pixels, that are arranged in a rectangular form.

(b) Video output devices – produce output in the form of video or images.
An example is a screen image projector or data projector that displays
information. from the computer onto a large white screen.
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(c) Audio output devices – speakers, headsets, or headphone, are used
for audio output (in the form of sound) from a computer. The signals
are sent to the speakers via a sound card that translates the digital
sound back into analog signals.

3.2.2 Central Processing Unit
The Central Processing Unit (CPU) or the processor, is often known as the brain
of a computer. It consists of an Arithmetic Logic Unit (ALU) and a Control
Unit (CU). In addition, the CPU also has a set of registers which are temporary
storage areas for holding data and instructions.

3.2.2.1 Arithmetic Logic Unit

This unit consists of two sub-units, namely arithmetic and logic units.

1. Arithmetic unit – performs arithmetic operations like addition, subtrac-
tion, multiplication, and division, on the data.

2. Logic unit – performs logical operations like comparisons of data values.

3.2.2.2 Registers

Registers are high-speed storage areas within the CPU but have the least storage
capacity. They store data, instructions, addresses, and intermediate results of
processing. Some of the commonly used registers are:

• Accumulator (ACC) – stores the result of arithmetic and logic operations.

• Instruction Register (IR) – holds the instruction that is currently being
executed.

• Program Counter (PC) – holds the address of the next instruction to be
processed.

• Memory Address Register (MAR) – contains the address of the data to
be fetched.

• Memory Buffer Register (MBR) – temporarily stores data fetched from
memory or the data to be sent to memory.

RMBR is also called a Memory Data Register (MDR).

• Data Register (DR) stores the operands and any other data.
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Figure 3.2: Memory hierarchy

3.2.2.3 Control Unit

This unit manages and coordinates the operations of all parts of the computer
but does not carry out any actual data processing operations. The functions of
this unit are:

1. generate control signals that controls various operations of the computer.

2. obtain instructions from the memory, interpret them, and then direct the
ALU to execute those instructions.

3. communicate with I/O devices for transfer of data or results from/to mem-
ory.

4. decides when to fetch the data and instructions, what operation to per-
form, where to store the results, the ordering of various events during
processing etc.

3.2.3 Memory unit
Memory is the storage space in a computer where data to be processed and
instructions required for processing are stored. The various memories can be
organized hierarchically called memory hierarchy as shown in Figure 3.2. As we
ascend the memory hierarchy,
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• Capacity in terms of storage decreases.

• Cost per bit of storage increases.

• Frequency of access of the memory by the CPU increases.

• Access time decreases.

Memory is primarily of two types :

1. Internal Memory: memories that reside on the motherboard.

2. External memory: memories that are outside the motherboard.

3.2.3.1 Internal Memory

Internal memory includes:

1. Registers – high-speed storage areas within the CPU.

2. Primary memory – main memory of the computer. It is categorized into
two:

(a) Random Access Memory (RAM) – used for storing data and instruc-
tions during the operation of a computer. Data to be processed are
brought to RAM from input devices or secondary memory. After
processing, the results are stored in RAM before being sent to the
output device.

RRAM is often referred to as volatile memory, since the data
stored in RAM are lost when you switch off the computer or if
there is a power failure.

RDynamic RAM (DRAM) and Static RAM (SRAM) are the
two types of RAM

.
(b) Read Only Memory (ROM) – a non-volatile primary memory. It

does not lose its content when the power is switched off. ROM, as
the name implies, has only read capability and no write capability.
After the information is stored in ROM, it is permanent and can-
not be modified. Therefore, ROM is used to store the data that do
not require a change, for example, the boot information (information
required while starting the computer when it is switched on).



3.3. VON NEUMANN ARCHITECTURE 57

RPROM (Programmable Read Only Memory), EPROM
(Erasable and Programmable Read Only Memory), EEPROM
(Electrically Erasable and Programmable Read Only Memory),
and UVEPROM (Ultra-Violet Erasable and Programmable Read
Only Memory) are the various ROM types.

3. Cache memory – placed between RAM and CPU and stores the data and
instructions that are frequently used . During data processing, the CPU
first checks the cache for the required data or instruction. If found in
the cache, the data or instructions are retrieved from the cache itself.
Otherwise, they are then retrieved from RAM.

3.2.3.2 External Memory

External memory includes:

1. Magnetic tape – a plastic tape with magnetic coating mounted on a reel
or in a cassette. It is a sequential access device, meaning that the data
can be read only in the order in which they are stored.

2. Magnetic disk – a thin plastic or metallic circular plate coated with mag-
netic oxide and encased in a protective cover. Hard disk is an example.

RA magnetic disk is a direct-access secondary storage device, ie.,
you can directly access the location you want, without accessing the
previous locations.

3. Optical disk – a flat circular disk coated with reflective plastic material
that can be altered by laser light. The data bits 1 and 0 are stored as
spots that are relatively bright and light, respectively. CDs and DVDs are
examples.

3.3 Von Neumann architecture
If you want to perform some processing on data, they must be stored in computer
memory. Similarly, the instructions that process the data must also be stored in
the memory. This concept of storing programs in computer memory is known as
stored program concept. A computer based on Von Neumann architecture
stores data and instructions in the same memory.



58 CHAPTER 3. FOUNDATIONS OF COMPUTING

RAs an alternative to Von Neumann architecture, you have the Harvard
architecture, wherein there are separate memories for storing programs
and data (code memory for programs and data memory for data). It also
utilises stored program concept.

3.4 Instruction execution
An instruction ’instructs’ the processor to perform an elementary operation.
Curious to know what an instruction looks like and how it is executed? Read
on!

3.4.1 Instruction format
An instruction format defines the layout of an instruction, in terms of its con-
stituent parts. The set of instructions that a computer processor can understand
and execute is called its Instruction Set Architecture or ISA in short. Each pro-
cessor has its own ISA. Irrespective of the ISA, an instruction can be thought to
be divided into various parts called fields. The most common fields of instruction
are Operation code (opcode) and Operand code as shown below.

opcode operand code

The remainder of the instruction fields differ from one ISA to another. The
operation code represents the action the processor must perform. The operand
code defines the data (operands) on which the operations are to be performed.
It directly specifies the value of the operands or tells the locations where to fetch
the operands from.

3.4.2 Instruction execution cycle
CPU executes an instruction in a series of steps called instruction execution
cycle. An instruction cycle (sometimes called a fetch–decode–execute cycle)
is the process by which a computer retrieves a program instruction from its
memory, determines what actions to perform, and carries out those actions to
produce meaningful output. The instruction cycle which starts with fetching
the instruction itself is shown in Figure 3.3.

The cycle comprises the following steps:

1. Fetch the instruction

1.1 Fetch the instruction from memory whose address is currently held
in the program counter.

1.2 Store the fetched instruction in the instruction register.
1.3 Increment the program counter so that it has the address of the next

instruction to be fetched.
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2. Decode the instruction

2.1 Based on the instruction set architecture, the instruction is broken
into opcode and operand codes.

2.2 The operation to be performed is thus identified.

3. Execute the instruction

3.1 The operation identified in the decode step is now performed by the
CPU.

4. Store the result

4.1 The result generated by the operation is stored in the main memory,
or sent to an output device.

This cycle is then repeated for the next instruction.

Figure 3.3: Instruction execution cycle1

3.5 Programming languages
Programming languages are used to write programs that are precise representa-
tions of algorithms and control the behaviour of a computer. Each language has
a unique set of keywords (words that it understands) and syntax (set of rules)
to organize the program instructions.

Programming languages fall into three categories:
1Image courtesy: Slightly adapted from Computer Fundamentals, Anita Goel and redrawn.
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1. Machine language:- is what the computer can understand, but it is difficult
for the programmer to understand.

RMachine languages consist of binary numbers only.

2. High-level language:- is easier to understand and use for the programmer
but difficult for the computer.

RThe programs written in high-level languages contain English-
like statements as well as programming constructs specific to the
language.

3. Assembly language:- falls in between machine language and high-level lan-
guage. It is similar to machine language, but easier to write code because
it allows the programmer to use symbolic names (like ADD, SUB) for oper-
ations.

RMachine languages and assembly languages are also called low-
level languages.

3.5.1 Machine Language
A program written in machine language is a collection of binary digits or bits
(strings of 0’s and 1’s) that the computer reads and interprets. It is also referred
to as machine code or object code. Some features of a program written in machine
language are:

1. The computer can understand the programs written in machine language
directly. No translation of the program is needed.

2. Program written in machine language can be executed very fast (Since no
translation is required).

3. Machine language is defined by the hardware of a computer. It depends
on the underlying processor, memory arrangement, operating systems,
and peripheral devices; and is thus machine-dependent. A machine-level
program written for one type of computer may not work on another type.

4. Each object code instruction has an opcode field that specifies the actual
operation (such as add or compare) and some other fields for the operands.

Example 3.1. Assume that the opcode and operands occupy 4 bits each
and that the opcode for addition is 1010, then to add 3 and 6, the binary
code would be 1010︸︷︷︸

add

0011︸︷︷︸
3

0110︸︷︷︸
6
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3.5.2 Assembly Language
A program written in assembly language uses a symbolic representation of ma-
chine codes. The opcodes are replaced by symbolic names called mnemonic
codes that are much easier to remember. The mnemonics for various oper-
ations are decided by the processor manufacturer and cannot be changed by
the programmer. Some of the features of assembly code ( program written in
assembly language) are:

1. Assembly language programs are easier to write than machine language
programs since assembly language programs use short, English-like repre-
sentations of machine code.
Example 3.2. If the mnemonic code for addition is ADD, then to add 3
and 6, the assembly level code will be ADD 3,6.

2. Assembly language programs are also machine-dependent.

3. Although assembly language programs use symbolic representation, they
are still difficult to write. They are generally employed when efficiency
matters.

3.5.3 High-level Language
A high-level language is a programming language such as C, FORTRAN, or
Pascal that enables a programmer to write programs that are more or less in-
dependent of a particular type of hardware. Such languages are considered
high-level because they stand closer to humans but farther from machine lan-
guages. Some of the features of programs written in high-level language are as
follows:

1. Programs are easier to write, read, and understand in high-level languages
than in machine language or assembly language.

2. Most of the operations like arithmetic and logical operations are denoted
by symbols called operators.
Example 3.3. To add 3 and 6, the high level language code will be 3+6.
Here ‘+’ is the operator for addition.

3. The programs written in high-level languages are easily portable from one
computer to another, since they are not machine-dependent

3.6 Translator software
The computer can understand only machine code (strings of 0’s and 1’s). Thus
when the program is written in a language other than machine language (as-
sembly or high-level languages), the program is to be converted to machine
code. This conversion is called translation and is performed by the translator
software.



62 CHAPTER 3. FOUNDATIONS OF COMPUTING

RIn the translation process, the original program is called source code,
and the translated code (object code) is the target code.

There are three types of translator software as discussed below.

3.6.1 Assembler
The assembler converts a program written in assembly language into machine
code. There is usually a one-to-one correspondence between the assembly state-
ments and the machine language instructions.

RThe machine language is dependent on the processor architecture.
Thus, the converted assembly language programs also differ for different
computer architectures.

3.6.2 Compiler
The compiler is a software that translates programs written in high-level lan-
guage to object code, which can be then executed independently. Each pro-
gramming language has its compiler. The compilation process generally in-
volves breaking down the source code into small pieces creating an intermediate
representation, and then constructing the object code from the intermediate
representation.

3.6.3 Interpreter
The interpreter also converts the high-level language program into machine
code. However, the interpreter functions in a different way than a compiler.
An interpreter reads the source code line-by-line, converts it into machine-
understandable form, executes the line, and then proceeds to the next line.
This is unlike a compiler that takes the entire source code and converts it to ob-
ject code. The key differences between a compiler and an interpreter are shown
in Table 3.1.



3.7. CONCLUSION 63

Table 3.1: Comparison of compiler and interpreter

Compiler Interpreter

1. converts the entire source code
into object code which is then exe-
cuted by the user.

1. translates the source code line-
by-line – takes a line of source code,
converts it into machine executable
form, executes it, and proceeds with
the next line.

2. Once the object code is created,
it can be executed multiple times
without the need to compile during
each execution.

2. During each execution, the
source code is first interpreted and
then executed.

3. During execution of an object
code, neither the source nor the
compiler is required

3. Both interpreter and source code
are required during execution.

4. faster 4. slower

5. Languages like C, C++ and Java
are compiled.

5. Languages like BASIC, Pascal
and Python are interpreted.

3.7 Conclusion
Through the exploration of computer architecture and computation, we’ve un-
raveled the essential components that form the backbone of modern computing.
By examining the architecture of a computer, including the input/output units,
central processing unit (CPU), and memory unit, we’ve gained insights into data
flows and how data are processed within a computing system. The Von Neu-
mann architecture, a foundational concept in computer science, was discussed
as the blueprint that guides the organization of these components, highlighting
the interaction among them.

The journey continued with a detailed look at how instructions are format-
ted and executed, providing clarity on how computers systematically perform
tasks. We explored the various types of programming languages, from machine
language to assembly and high-level languages, illustrating the evolution of lan-
guages that facilitate human-computer interaction. Additionally, the role of
translator software viz. assemblers, compilers, and interpreters was emphasized
as crucial for bridging the gap between human-readable code and machine-
executable instructions.

This comprehensive overview of computer architecture and computation lays
a strong foundation for understanding how computers function as powerful
tools for solving complex problems. By grasping these concepts, you’re better
equipped to appreciate the intricacies of programming and the computational
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processes that drive the digital world.
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Chapter 4

Python fundamentals

“The joy of coding Python should be in seeing short, concise, readable classes
that express a lot of action in a small amount of clear code – not in reams of
trivial code that bores the reader to death.”

– Guido van Rossum

4.1 Introduction
Python is a high-level, interpreted language. Its features are:

• Python is interpreted: Python is processed at runtime by the inter-
preter. You need not compile your program before executing it.

• Python has simple, conventional syntax: Python statements are very
close to those of pseudocodes, and Python expressions use the conventional
notation found in algebra.

• Python is highly interactive: Expressions and statements can be en-
tered at an interpreter’s terminal to allow the programmer to try out the
code and receive immediate output.

• Python is object-oriented: Python supports Object-Oriented Pro-
gramming (OOP) principles. OOP closely models real-world objects and
their interactions, leading to more natural and understandable program
structures.

• Python scales well: Python is the most apt language in which a novice
programmer can start coding. At the same time, it is so powerful to cater
to the research community’s needs.
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R Python comes in two flavours: Python 2 and Python 3. Throughout
this book, we use version 3.

4.1.1 How to run your Python code?
There are two ways you can run your Python code:

1. using the Python shell

2. running as a standalone script

4.1.1.1 Using Python shell

The Python shell is an interactive terminal-based environment wherein you
can directly communicate with the Python interpreter. First, you open a ter-
minal and type python3. Now the shell turns up with a welcome message as
shown below.

user@Ubuntu2204LTS:~$ python3
Python 3.10.12 (main, Jul 29 2024, 16:56:48) [GCC 11.4.0] on

linux
Type "help", "copyright", "credits" or "license" for more

information.
>>>

The symbol >>> is called the shell prompt. This symbol prompts you for
Python statements. When you enter a statement in the shell, the Python in-
terpreter processes it and displays the result, if any, then followed by a new
prompt as shown below:

>>> "Welcome to the world of Python programming"
'Welcome to the world of Python programming'
>>>

The shell-based execution of Python code will become cumbersome if you want
to do some complex processing. You may have to type in a lot of Python
statements and you can give only one command at a time to the interpreter.
Undoubtedly, this is frustrating for most of us. The workaround is to run your
code as a standalone script.

4.1.1.2 Running as a standalone script

Here are the steps:

1. Combine all the statements that you wish to execute into a Python pro-
gram. program is known as script and should be saved with “py” exten-
sion, for example sample.py.
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2. You may use some text editor to create your script. gedit, vim are some
of the editors that you can probably use.

3. Then open a terminal in the directory where the script is stored. To run
your script (assuming the name is sample.py), just give

python3 sample.py

Now the script will be executed and you get the desired output.

Feel to have an example? Here you go! Suppose you have written a script
sample.py to display the message “My first Python program!”. This is how you
run it (The second line below shows the output):

user@Ubuntu2204LTS:~$ python3 sample.py
My first Python program!

4.1.2 The Python interpreter

Figure 4.1: Steps in interpreting a Python program1

As shown in Figure 4.1, the interpreter performs a sequence of steps to
execute your script:

1. The interpreter first reads a Python expression or a statement and verifies
that it is valid with regard to the rules, or syntax, of the language. Any

1Image courtesy: Slightly adapted from Fundamentals of Python: First Programs, Kenneth
A Lambert and redrawn.



4.2. “ON YOUR MARKS. GET SET. GO!” 69

invalid statement is called a syntax error. When the interpreter encounters
such an error, it halts with an error message.

2. If the expression is well formed, the interpreter then translates it to an
executable form called byte code. The Syntax checker and Translator
component of the interpreter is responsible for verifying the syntax of the
statements and translating valid statements to byte code.

3. Then, the byte code is sent to another interpreter component called the
Python Virtual Machine (PVM) for execution. If any error occurs during
execution, the process is halted with a runtime error message. Otherwise,
the execution runs to completion and the output is produced.

4.2 “On your marks. Get set. Go!”
Let us now start our Python journey. Learning Python (or any programming
language) goes hand in hand with learning English. Remember! How did you
master this vernacular language? You started with learning the alphabet and
then forming words out of them. Later you combined words to create meaningful
sentences, then progressed to form paragraphs out of sentences. Finally, an
article or an essay consists of one or more paragraphs. This is depicted in
Figure 4.2.

Figure 4.2: Steps in learning English2

You follow the same procedure to learn Python. As Figure 4.3 illustrates, you
start with the basic building bricks: alphabets, numbers, and special symbols.
Then, you combine them to build the foundation: constants, variables, and key-
words. Over the foundation, you create rooms viz. expressions or instructions.
A group of rooms (instructions) constitute a building (Python function). The
Python city (program) is carved out of multiple buildings (functions).

Figure 4.3: Steps in learning Python2

4.3 Character set
The set of characters supported by a programming language is called character
set. A character can be an alphabet, a digit, or a special symbol. Python

2Image courtesy: Slightly adapted from Let us Python, Yashavant Kanetkar and redrawn.
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supports the following characters:

• upper case alphabets (A–Z)

• lower case alphabets (a–z)

• digits (0–9)

• special symbols like @,#,%,$ etc.

Python maps each valid character to an integer value called ASCII value.
(ASCII is the abbreviation of American Standard Code for Information Inter-
change.) For example, the ASCII value of character 'A' is 65.

4.4 Constants, variables, and keywords
When properly combined, the characters in the character set form constants,
variables, and keywords. A ‘constant’ is an entity whose value doesn’t change.
3, 100, etc. are all constants.

The data on which programs operate are stored in various memory locations.
To simplify the retrieval and use of data values, these memory locations are given
names. Since the value stored in each location may change occasionally, the
names given to these locations are called ‘variable names’ or simply ‘variables’.
Thus, a variable is a name that refers to a value.

You should choose meaningful names for your variables. The names can
include both letters and digits; however, there are restrictions:

1. Variable names must start with a letter or the underscore ‘_’ and can be
followed by any number of letters, digits, or underscores.

2. Variable names are case sensitive; thus, the variable COUNT is a different
name from the variable count.

3. Variable names cannot be a keyword. Keywords(also called reserved
words) are special words, reserved for other purposes; thus, they cannot
be used as variable names. Python has thirty-three keywords as listed
in Figure 4.4. All the keywords except True, False, and None are in
lowercase, and they must be written as is.

R ‘_’ is a valid variable name.

4.5 Data types
Any data item stored in memory has an associated data type. For example,
your roll number is stored as a number whereas, your name is stored as a string.
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and
assert
break
class
continue
def
del

elif
else
except
exec
False
finally
for

from
global
if
import
in
is
lambda

None
not
or
pass
print
raise
return

True
try
while
with
yield

Figure 4.4: Reserved words in Python

The data type of an item defines the operations that can be performed on it,
and how the values are stored in memory. Python supports the following data
types:

• Number

• String

• List

• Tuple

• Set

• Dictionary

Here, Only the first two are discussed. The remaining data types will be explored
in later chapters.

4.5.1 Numbers
The number or numeric data type is used to store numeric values. There are
three distinct numeric types:

Type Description Examples

int integers 700,198005
float numbers with decimal point 3.14,6.023
complex complex numbers 3+4j, 10j

The integers include numbers that do not have decimal point. The int data
type supports integers ranging from −231 to 231 − 1.

R Python 2 defined two integer data types viz. int and long. The
difference is that the long type supports a much wider range of numbers
than what int does. On the other hand, Python 3 has just one integer
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type, namely int which is more or less like the long type from Python 2.

Python uses float type to represent real numbers (with decimal points).
The values of float type range approximately from −10308 to 10308 and have
16 digits of precision (number of digits after the decimal point). A floating-
point number can be written using either ordinary decimal notation or scientific
notation. Scientific notation is often useful for denoting numbers with very large
or very small magnitudes. See the examples below:

Decimal notation Scientific notation Meaning

3.146 3.146e0 3.146× 100

314.6 3.146e2 3.146× 102

0.3146 3.146e-1 3.146× 10−1

0.003146 3.146e-3 3.146× 10−3

complex numbers are written in the form x+yj, where x is the real part and
y is the imaginary part.

int type has a subtype bool. Any variable of type bool can take one of the
two possible boolean values, True and False (internally represented as 1 and 0,
respectively).

4.5.2 Strings
A string literal or a string is a sequence of characters enclosed in a pair of single
quotes or double quotes. "Hi", "8.5", `hello' are all strings. Multi-line
strings are written within a pair of triple quotes, ``` or """. The following is
an example of a multi-line string:

""" this is a multiline
string """

The strings ' ' and " " are called empty strings.

4.6 Statements
A statement is an instruction that the Python interpreter can execute. A state-
ment can be an expression statement or a control statement. An expression
statement contains an arithmetic expression that the interpreter evaluates. A
control statement is used to represent advanced features of a language like
decision-making and looping.

4.7 Conclusion
This chapter has introduced essential concepts that form the foundation of pro-
gramming in Python. Starting with the character set, which defines the symbols
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and letters the language recognizes, the chapter progresses to cover constants,
variables, and keywords, which are the building blocks of Python code. Under-
standing these elements is crucial as they allow you to store and manipulate
data effectively.

The chapter also delves into data types, specifically numbers, and strings,
highlighting how Python categorizes and processes different kinds of data. Fi-
nally, the exploration of Python statements provides insight into how instruc-
tions are structured and executed. With these fundamentals in place, you are
now equipped to write basic Python programs and ready to explore more ad-
vanced concepts.

4.8 Exercises
1. Suggest the most appropriate data type for the following data items:

(a) your name
(b) your branch of study
(c) your year of birth
(d) your age
(e) duration of B.Tech. programme
(f) the constant π

2. Which of the following are valid variable names in Python?

(a) myvariable
(b) my-variable
(c) my_variable
(d) MYVARIABLE
(e) 1stvariable
(f) variable2

3. Represent the following in scientific notation:

(a) 3.14
(b) speed of light
(c) current Indian population
(d) 0.000000257
(e) 2
(f) Avogadro’s constant
(g) Gravitational constant
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Chapter 5

Python expressions

“In the arithmetic of life, we add our joys, subtract our sorrows, multiply our
love, and divide our time.”

– Anonymous

5.1 Introduction
An arithmetic expression comprises operands and operators. Operands repre-
sent data items on which various operations are performed. The operations are
denoted by operators. The operands can be constants or variables. When a vari-
able name appears in the place of an operand, it is replaced with its value before
the operation is performed. The operands acted upon by arithmetic operators,
must represent numeric values. Thus, the operands can be integer quantities,
floating-point quantities, or even characters (recall that every character has an
equivalent ASCII value).

5.2 Operators in Python
Python language supports the following types of operators.

• Arithmetic Operators

• Comparison (Relational) Operators

• Assignment Operators

• Logical Operators

• Bitwise Operators

• Membership Operators

• Identity Operators
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5.2.1 Arithmetic Operators
The various arithmetic operators in Python are tabulated in Table 5.1. The
remainder operator (%) requires both operands to be integers, and the second
operand is non-zero. Similarly, the division operator (/) requires that the second
operand be non-zero. The floor division operator (//) returns the floor value of
the quotient of a division operation. See the example below:

>>> 7.0//2
3.0
>>> 7//2
3

RFloor division is also called integer division.

Table 5.1: Arithmetic operators

Operation Operator
Negation -
Addition +
Subtraction --
Multiplication *
Division /
Floor division //
Remainder %
Exponentiation **

Table 5.2: Comparison operators

Operation Operator
Equal to ==
Not equal to !=
Greater than >
Greater than or equal to >=
Less than <
Less than or equal to <=

5.2.2 Assignment operator
‘=’ is the assignment operator. The assignment statement creates new vari-
ables and gives them values that can be used in subsequent arithmetic expres-
sions. See the example:

>>> a=10
>>> b=5
>>> a+b
15

Python allows you to assign a single value to several variables simultaneously.
An example follows:

>>> a=b=5
>>> a
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5
>>> b
5

You can also assign different values to multiple variables. See below

>>> a,b,c=1,2.5,"ram"
>>> a
1
>>> b
2.5
>>> c
'ram'

Python supports the following six additional assignment operators (called com-
pound assignment operators): +=, -=, *=, /=, //= and %=. These are de-
scribed below:

Expression Equivalent to
a+=b a=a+b
a-=b a=a-b
a*=b a=a*b
a/=b a=a/b
a//=b a=a//b
a%=b a=a%b

5.2.3 Comparison Operators
Table 5.2 shows the various comparison operators. Comparison operators are
also called relational operators. The result of a comparison is either True or
False. == and != are also known as equality operators.

The use of comparison operators is illustrated below:

>>> i,j,k=3,4,7
>>> i>j
False
>>> (j+k)>(i+5)
True

Comparison operators support chaining. For example, x < y <= z is equiv-
alent to x < y and y <= z.

5.2.4 Logical Operators
Python includes three Boolean (logical) operators viz. and , or , and not . The
and operator and or operator expect two operands,which are hence called binary
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operators. The and operator returns True if and only if both of its operands are
True, and returns False otherwise. The or operator returns False if and only
if both of its operands are False, and returns True otherwise. The not operator
expects a single operand and is hence called a unary operator. It returns the
logical negation of the operand, that is, True, if the operand is False, and
False if the operand is True.

The behaviour of each operator can be specified in a truth table for that
operator. The first row in the truth table contains labels for the operands
and computed expressions. Each row below the first row contains a possible
combination of values for the operands and the value resulting from applying
the operator to them. Tables 5.3 shows the truth tables for or and and operators.
Table 5.4 shows the truth tables for not.

Table 5.3: Truth tables for logical OR and logi-
cal AND operators

a b a or b a and b
False False False False
False True True False
True False True False
True True True True

Table 5.4: Truth table
for logical NOT

a not a
False True
True False

In the context of logical operators, Python interprets all non-zero values as
True and zero as False. See examples below:

>>> 7 and 1
1
>>> -2 or 0
-2
>>> -100 and 0
0

5.2.5 Bitwise operators
Bitwise operators take the binary representation of the operands and work on
their bits, one bit at a time. The bits of the operand(s) are compared starting
with the rightmost bit - the least significant bit, then moving towards the left
and ending with the leftmost (most significant) bit. The result of the comparison
will depend on the compared bits and the operation being performed. These
bitwise operators can be divided into three general categories as discussed below:

5.2.5.1 One’s complement operator

One’s complement is denoted by the symbol ∼. It operates by changing all
zeroes to ones and ones to zeroes in the binary representation of the operand.
The operand must be an integer-type quantity.
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Example 5.1. This example illustrates the one’s complement operator. See
below:

>>> ~98
-99
>>> ~102
-103

Let us understand the results obtained. Take 102. Its binary is 01100110.
Flipping the bits, yields 10011001 = -103. This is shown below:

102 = 0110 0110

∼ 102 = 1001 1001
= -103

5.2.5.2 Logical bitwise operators

There are three logical bitwise operators: bitwise and (&), bitwise exclusive
or (∧), and bitwise or ( | ). Each of these operators require two integer-type
operands. The operations are performed on each pair of corresponding bits of
the operands based on the following rules:

• A bitwise and expression will return 1 if both the operand bits are 1.
Otherwise, it will return 0.

• A bitwise or expression will return 1 if at least one of the operand bits
is 1. Otherwise, it will return 0.

• A bitwise exclusive or expression will return 1 if the bits are not alike
(one bit is 0 and the other is 1). Otherwise, it will return 0.

These results are summarized in Table 5.5. In this table, b1 and b2 represent
the corresponding bits within the first and second operands, respectively.

Table 5.5: Logical bitwise operators

b1 b2 b1 & b2 b1 | b2 b1
∧ b2

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

Example 5.2. This example illustrates the operation of the three logical bitwise
operators as shown below:
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>>> a=20
>>> b=108
>>> a&b
4
>>> a|b
124
>>> a^b
120

The following justifies these results.

a = 0001 0100
b = 0110 1100

a & b = 0000 0100
= 4

a = 0001 0100
b = 0110 1100

a | b = 0111 1100
= 124

a = 0001 0100
b = 0110 1100

a ∧ b = 0111 1000
= 120

5.2.5.3 Bitwise shift operators

The two bitwise shift operators are shift left (<<) and shift right (>>). The
expression x << n shifts each bit of the binary representation of x to the left, n
times. Each time we shift the bits left, the vacant bit position at the right end
is filled with a zero.

The expression x >> n shifts each bit of the binary representation of x to
the right, n times. Each time we shift the bits right, the vacant bit position at
the left end is filled with a zero.
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Example 5.3. This example illustrates the bitwise shift operators as shown
below:

>>> 120>>2
30
>>> 10<<3
80

Let us now see the operations in detail.
120 = 0111 1000

Right shifting once − 0011 1100
Right shifting twice − 0001 1110

120>>2 = 30

10 = 0000 1010

Left shifting once − 0001 0100
Left shifting twice − 0010 1000
Left shifting thrice − 0101 0000

10<<3 = 80

5.2.6 Membership Operators
These operators test for the membership of a data item in a sequence, such as
a string. Two membership operators are used in Python.

• in – Evaluates to True if it finds the item in the specified sequence and
False otherwise.

• not in – Evaluates to True if it does not find the item in the specified
sequence and False otherwise.

See the examples below:

>>> 'A' in 'ASCII'
True
>>> 'a' in 'ASCII'
False
>>> 'a' not in 'ASCII'
True
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5.2.7 Identity Operators
is and is not are the identity operators in Python. They are used to check if
two values (or variables) are located in the same part of the memory. x is y
evaluates to true if and only if x and y are the same object. x is not y yields
the inverse truth value.

Table 5.6: Precedence rules in Python

Precedence group Operators Associativity

Parenthesis () L → R

Exponentiation ** R → L

Unary plus, Unary minus, One’s com-
plement

+, -, ∼ R → L

Multiplication, Division, Floor division,
Modulus

*, /, //, % L → R

Addition, Subtraction +, - L → R

Bitwise shift operators <<, >> L → R

Bitwise AND & L → R

Bitwise XOR ∧ L → R

Bitwise OR | L → R

Comparisons, Identity and Membership
operators

==, !=, <,
<=, >=, >
is, is not,
in, not in

L → R

Logical NOT not R → L

Logical AND and L → R

Logical OR or L → R

Assignment operators =, +=, -=, *=
/=, //=, %= R → L

5.2.8 Precedence and associativity of operators
When an expression contains more than one operator, in what order will the op-
erations be performed? To answer this question satisfactorily, one has to know
the precedence of operators. The order in which operators in an arithmetic ex-
pression are applied to their respective operands is called the precedence of
operators. It is also known by other names, such as priority or hierarchy.
Operators with a higher precedence are applied before operators having a lower
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precedence. For example, the multiplication operator has precedence over the
addition operator. This means that if an expression has both + and ∗, then ad-
dition will be performed only after multiplication. The precedence of operators
is shown in Table 5.6. The operators are listed in groups in descending order –
the upper group has higher precedence than the lower ones.

We find that in Table 5.6, more than one operator exists in the same group.
These operators have the same precedence. If an expression has multiple oper-
ators with the same precedence, the tie is resolved using associativity rules.
Associativity is of two types – Left to Right (L→ R) and Right to Left (R →L).
The third column of Table 5.6 lists the associativity of the operators. L→ R
means that when there are two operators with the same precedence, the op-
erator that comes first on a left-to-right scan of the expression will be given
priority. Similarly with R →L, the right operator has higher priority.

Consider the expression a− b+ c. Since + and − are of the same prece-
dence, so look for associativity. The associativity is L→R. Thus − will be
evaluated first as it comes to the left.

R = A + 3 < B ∗ 1 or C and D

2 1 4

3

5

6

Order Operation Resultant

1 B ∗ 1 5

2 A+ 3 4

3 A+ 3 < B ∗ 1 1

4 C&&D 1

5 A+ 3 < B ∗ 1||C&&D 1

6 R = A+ 3 < B ∗ 1||C&&D 1

Figure 5.1: Evaluation of an arithmetic expression
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Example 5.4. Consider the assignment statement

R = A+ 3 < B ∗ 1 or C and D

Let the values of the variables be A = 1, B = 5, C = −1, andD = True. Fig-
ure 5.1 shows the structure of the evaluation. The numbers shown in the circle
denote the order in which the various operators are applied. The final result is
1, which is assigned to R.

Table 5.7 gives more examples for expression evaluations.

Table 5.7: More examples of expression evaluations

Expression Evaluation Value

3 + 4 * 2 3 + 8 11

(3 + 4 ) * 2 7 * 2 14

2 ** 3 ** 2 2 ** 9 512

(2 ** 3) ** 2 8 ** 2 64

-3 ** 2 -(3 ** 2) -9

-(3) ** 2 (-3) ** 2 9

not True and False or True (False and False) or True True

5.2.9 Mixed-Mode Arithmetic

Table 5.9: Type coercion rules

Operands type Result type

int and int int

float and float float

int and float float

Performing calculations involving operands of different data types is called
mixed-mode arithmetic. Consider computing the area of a circle having 3 unit
radius:

>>> 3.14 * 3 ** 2
28.26
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Python supports mixed-mode arithmetic through type coercion, wherein the
resultant of an expression will have the most general data type among all
operand data types involved. The operand of a less general type will be tem-
porarily and automatically converted to the more general type before the oper-
ation is performed. The various conversion rules are summarized in Table 5.9.

In the above example, the value 9 (result of 3 ** 2) is converted to 9.0
before the multiplication.

5.3 Conclusion
This chapter on Python expressions has provided a detailed exploration of the
various operators that are essential for performing operations within Python
programs. We’ve covered arithmetic operators, which form the basis of mathe-
matical calculations, and assignment operators, which link values to variables.
Comparison operators were discussed as tools for evaluating relationships be-
tween values, while logical operators allow for the combination of multiple con-
ditions to control the flow of a program.

Bitwise operators introduced a deeper level of manipulation by enabling op-
erations at the binary level, and membership and identity operators offered
ways to test for presence within sequences and compare objects, respectively.
Additionally, we delved into the concepts of operator precedence and associativ-
ity, which dictate the order in which operations are executed, ensuring accurate
expression evaluation. Finally, mixed-mode arithmetic was introduced, demon-
strating how Python handles expressions involving different data types.

Understanding these operators and their interactions is crucial for writing
efficient and accurate Python code. This knowledge forms the bedrock of more
complex programming tasks, equipping you with the skills to manipulate data,
control program logic, and ultimately, build more sophisticated applications.

5.4 Exercises
1. Perform the following operations:

(a) 15 and -8
(b) 127 or 0
(c) 0 and 1048
(d) not 10787

2. Perform the following operations:

(a) 12 & 10
(b) 55 & 24
(c) 45 | 50
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(d) 13 | 99
(e) 18 ∧ 20
(f) 118 ∧ 65
(g) ∼ 50
(h) 14 << 3
(i) 25 << 2
(j) 15 >> 4
(k) 45 >> 3

3. Evaluate the following expressions:

(a) 34 ** 2 * 8 + -8
(b) 2 ** 3 ** 4
(c) (3 * 22) + - 8 ** 2 + 25
(d) True and not False or not True and True
(e) 45 * 2 + - 75 and 0 ** 4 or 3
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Chapter 6

Data input and output

“Your input determines your outlook. Your outlook determines your output,
and your output determines your future.”

– Zig Ziglar

6.1 Introduction
Python provides various functions or methods for performing I/O operations.
You are motivated to read the box Functions – the gist before proceeding
further.

To display something on the screen, Python uses the method print. It just
prints whatever is given inside the quotes. See an example below:

>>> print("Hello World!")
Hello World!

Functions – the gist
A function is a named block of statements that carries out some specific,
well-defined task. A program can be seen as a collection of functions, each
of which serves a unique purpose. Functions are of two types: built-in and
user-defined functions. Built-in functions are those that are provided by
the interpreter itself. These include I/O functions, mathematical functions,
etc. User-defined functions are those that are created by the programmers.
Optionally a function can take input values called parameters or arguments
to process and could also give back an output value, which is known as
return value.
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See another example now: Consider the statements

>>> a = 7
>>> print("The value of a is ",a)
The value of a is 7

Python prints as such, whatever is enclosed in " ". In the above example, the
first occurrence of a is within double quotes. So it is printed as such. The
second a occurs outside the quotes. Thus, its value 7 gets printed. See another
example:

>>> x=5
>>> y=3
>>> print("The value of",x,"and",y,"is",x+y)
The value of 5 and 3 is 8

Python f-strings offer a prettier way to achieve the same message output. See
below:

>>> print(f"The value of {x} and {y} is {x+y}")
The value of 5 and 3 is 8

As shown above, the string to be printed should be prefixed with a ‘f’ indicat-
ing an f-string. The variables to be printed are to be enclosed in a pair of braces.

To receive input from the user, Python provides the input() method which
accepts the input as a string. See an example:

>>> myName = input("What is your name?")
What is your name?Python language
>>> print("I am ",myName)
I am Python language

input() can accept numbers too but are accepted as strings. So if any
arithmetic operation is to be performed on the received input, the programmer
must convert them from strings to the appropriate numeric types. Python uses
type conversion functions to convert values from one data type to another.
The type conversion functions have the same name as the data type to which it
converts. Table 6.1 lists the various type conversion functions.

Note that the int function converts a float to an int by truncation, not
by rounding to the nearest whole number. Truncation simply chops off the
number’s fractional part.

Python provides a function type() to know the data type of a variable. See
below:

>>> i=2
>>> b=True



90 CHAPTER 6. DATA INPUT AND OUTPUT

Table 6.1: Type conversion functions

Conversion Function Sample usage Value Returned

int(a number or a string) int(3.7) 3

int('347') 347

float(a number or a string) float(33) 33.0

float('33.8') 33.8

float('33') 33.0

str(any value) str(37) '37'

str(37.6) '37.6'

>>> s="Hello"
>>> f=7.18
>>> print(type(i))
<class 'int'>
>>> print(type(b))
<class 'bool'>
>>> print(type(s))
<class 'str'>
>>> print(type(f))
<class 'float'>

6.1.1 Escape sequences
With the print method, whatever you enclose within a pair of double quotes,
gets printed as such. But there are a few exceptions, like quotation marks, com-
mas, etc. For this reason, Python provides special character constants referred
to as escape sequences. An escape sequence refers to a combination of characters
beginning with a backslash (\) followed by letters. Some of the escape sequences
in Python are shown in Table 6.2.

See some illustrative examples below:

>>> print("Hello world")
Hello world
>>> print("Hello\tworld")
Hello world
>>> print("Hello\bworld")
Hellworld
>>> print("Hello \bworld")
Helloworld
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>>> print("Hello\nworld")
Hello
world
>>> print("Hello\vworld")
Hello

world
>>> print("The teacher said, \"It\'s very easy to program with

Python\"")
The teacher said, "It's very easy to program with Python"

Table 6.2: Escape sequences in Python

Escape Sequence Meaning

\b Backspace

\n Newline

\t Horizontal tab

\v Vertical tab

\\ The \ character

\' Single quotation mark

\" Double quotation mark

6.2 Program Comments and Docstrings
As programs get bigger and more complicated, they get more difficult to read
and understand. For this reason, it is beneficial to add notes to your programs
to explain the purpose of the statements. These notes are called comments. A
comment is a piece of program text that the computer ignores but provides useful
documentation to programmers. These comments begin with the # symbol and
extend to the end of a line. Everything from the # to the end of the line is
ignored by the interpreter while execution – it does not affect the program.

An end-of-line comment might explain the purpose of a variable. Here is an
example:

>>> sum = 5 + 7 # the variable sum contains the sum of 5 and 7

You can also put comments on a separate line:

>>> # Let us now print Hello
>>> print("Hello")
Hello
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Python also supports comments that extend multiple lines, one way of doing
it is to use # in the beginning of each line. Here is an example:

>>> # This is a long comment
>>> # and it extends
>>> # to multiple line

Just as comments are attached to individual statements, you can also include
details about the program’s purpose at the beginning of the program file. This
type of comment called a docstring, is a multi-line string. Here is an example:

"""
Program name: areaRect.py
Version: 1.1

This program finds the area of a rectangle.
The inputs are two integers representing the length
and breadth of a rectangle, and the output is an
integer named area that represents the area of
the rectangle
"""

6.3 The math module
Python provides many functions ranging from input/output to performing com-
plex calculations. Python groups together functions providing similar function-
alities into a module for easy access to them. math, sys, os are some com-
monly encountered modules. Let us have a look at the math module. This
module includes several functions that perform basic mathematical operations
- sqrt(), sin(), exp(), a few to mention. In addition to functions, the math
module also has the values of the constants π and e. To use a function or a
constant of the math module, you need to do two things:

1. import the module

2. access the function or the constant by prefixing its name with ”math.”
(math followed by a dot)

See the examples below:

>>> import math
>>> math.pi
3.141592653589793
>>> math.e
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2.718281828459045
>>> math.sqrt(3)
1.7320508075688772

6.4 Errors in Python program
Errors in a Python program are divided into two categories:

1. Syntax errors

2. Semantic errors

6.4.1 Syntax errors
Programming beginners mostly make typographical errors in their programs.
Such errors are called syntax errors. Syntax is the set of rules for constructing
well-formed expressions or statements in a language. A computer generates a
syntax error when an expression or sentence is not well formed. When Python
encounters a syntax error in a program, it halts execution with an error message
indicating the reason for the error. Following are some of the syntax errors:

Name error

This error occurs when a referenced variable is not found. See an example:

>>> print(x)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'x' is not defined

The error occurs because you try to print the value of the variable x without
assigning any value to it.

Syntax error

A very common mistake while writing programs is to omit the required paren-
theses, as shown below:

>>> print x
File "<stdin>", line 1

print x
^^^^^^^

SyntaxError: Missing parentheses in call to 'print'. Did you
mean print(...)?

Indentation error
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Indentation is very significant in Python code. Each line of code must begin in
the leftmost column, with no leading spaces. The only exception to this rule
occurs in control statements and definitions, where nested statements must be
indented one or more spaces. An indentation error is raised when there is an
incorrect indentation. See below:

>>> print(x)
File "<stdin>", line 1

print(x)
IndentationError: unexpected indent

Note the extra space between the prompt >>> and print(x).

Type error

Python is a strongly typed programming language. This means that the in-
terpreter checks the data types of all operands before performing any operation.
If the type of an operand is not appropriate, the interpreter halts execution with
an error message. This error checking prevents a program from attempting to
do something that it cannot do. See an example:

>>> 5+'3'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'int' and 'str'

6.4.2 Semantic errors
Semantics is the set of rules that allows the computer to interpret the meaning
of expressions or statements. A semantic error is detected when the action that
an expression describes cannot be carried out, even though that expression is
syntactically correct. Division by zero is the most common semantic error.

>>> 7/0
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero

6.5 Programming examples
Program 6.1. To print “My first Python program”.

print("My first Python program")
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Program 6.2. To input the user’s name and print a greeting message.

name=input("Enter your name")
print("Hello ",name)

Program 6.3. To input a number and display it.

num=int(input("Enter a number"))
print("The number you entered is",num)

Program 6.4. To add and subtract two input numbers.

a=int(input("Enter the first number"))
b=int(input("Enter the second number"))
sum=a+b
print("The sum of the two numbers is",sum)
difference=a-b
print("The difference between the two numbers is",difference)

Program 6.5. To input the sides of a rectangle and find its perimeter.

length=int(input("Enter the length of the rectangle"))
breadth=int(input("Enter the breadth of the rectangle"))
perimeter=2*(length+breadth)
print("Perimeter of the rectangle is",perimeter)

Program 6.6. To input the side of a square and find its area.

side=int(input("Enter the side of the square"))
area=side**2
print("Area of the square is",area)

Program 6.7. To input the radius of a circle and find its circumference.

import math
radius=int(input("Enter the radius"))
c=2*math.pi*radius
print("Circumference of the circle is",c)

Program 6.8. To input two values a and b and then find ab.

import math
a=int(input("Enter the base"))
b=int(input("Enter the exponent"))
c=math.pow(a,b)
print(a,"to the power",b,"is",c)
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R pow(a,b) finds ab.

Program 6.9. To input the base and altitude of a right triangle and find its
hypotenuse using Pythagoras theorem.

import math
b=int(input("Enter the base"))
a=int(input("Enter the altitude"))
temp=a**2+b**2
h=math.sqrt(temp)
print("The hypotenuse is",h)

Program 6.10. To input two values a and b and then swap them.

a=int(input("Enter a number"))
b=int(input("Enter another number"))
print("The numbers before swapping are a =",a,"and b =",b)
temp=a
a=b
b=temp
print("The numbers after swapping are a =",a,"and b =",b)

Program 6.11. To input two values a and b and then swap them without
using a third temporary variable

a=int(input("Enter a number"))
b=int(input("Enter another number"))
print("The numbers before swapping are a =",a,"and b =",b)
a=a+b
b=a-b
a=a-b
print("The numbers after swapping are a =",a,"and b =",b)

6.6 Conclusion
This chapter laid the foundation of Python programming by covering essential
topics such as user input, data output, escape sequences, comments, and the
math module. You’ve also gained insight into the different types of errors that
can occur in Python and how to handle them. With this knowledge, you are
now equipped to write more robust and interactive Python programs. As you
progress, these concepts will serve as the building blocks for more complex
programming tasks, allowing you to develop a deeper understanding of how
Python operates.
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6.7 Exercises
1. Write a Python program to calculate simple interest by inputting the value

of the Principal amount, period, and interest rate from the user.

2. Write a Python program to convert the time input in minutes to hours
and minutes. For example, 85 minutes is 1 hour 25 minutes.

3. Write a Python program that inputs the cost of an item and the number
of items and displays the total cost.

4. Write a Python program that takes an amount in dollars and converts it
to Indian rupees.

5. Write a Python program to reverse a three-digit number.

6. You are given the task of calculating the electricity bill of a house. Each
house has the following components: fan, light, washing machine, and
computer. Each fan consumes 1 unit per day, and each light consumes 0.5
units per day, the washing machine consumes 2 units per day and each
computer consumes 3 units per day. Let the cost of 1 unit be 50 rupees.
Input the number of fans, lights, washing machines, and computers for
a particular house and find the total electricity bill for that house for 2
months. Assume a 30-day month.
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Chapter 7

Control structures

“It is not our abilities that show who we truly are, it is our choices.”
– Albus Dumbledore

“If you always do what you’ve always done, expect the same results. Else,
be prepared for change”

– Anonymous

“It’s not what we do once in a while that shapes our lives. It’s what we do
consistently.”

- Anthony Robbins

7.1 Adventure game
Text-based adventure games are a genre of interactive fiction where players nav-
igate through a narrative by making choices and issuing commands, all conveyed
through text. Unlike graphical games, these games rely on the player’s imagina-
tion and the game’s text-based descriptions to create an immersive experience.
The concepts you will learn in this chapter will enable you to create your own
adventure game.

7.2 Introduction
The Python programs encountered so far are very simple. These follow the
sequencing construct described in Chapter 2. Python also supports the other
two constructs, viz. selection, and looping. These constructs enable Python to
solve real-life problems effectively. Python control structures form the topic of
discussion in this chapter.
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7.3 Selection statements
This section explores several types of selection statements that allow the com-
puter to make choices.

7.3.1 One-way selection statement
First, we discuss the if statement, also known as conditional execution. The
following example tests whether a variable x is positive or not.

>>> x=10
>>> if x>0:
... print(x,"is positive")
...
10 is positive

It is possible to combine multiple conditions using logical operators. The fol-
lowing code snippet tests whether a number x is a single-digit number or not.

>>> x=int(input("Enter a number"))
Enter a number7
>>> if x > 0 and x < 10:
... print(x,"is a positive single digit.")
...
7 is a positive single digit.

Python provides an alternative syntax for writing the condition in the above
code that is similar to mathematical notation:

>>> x=int(input("Enter a number"))
Enter a number8
>>> if 0<x<10:
... print(x,"is a positive single digit.")
...
8 is a positive single digit.

7.3.2 Two-way selection statement
The if-else statement, also known as alternative execution, is the most com-
mon type of selection statement in Python. See the following example to check
if a person is major or minor.

>>> age=12
>>> if age>=18:
... print("Major")
... else:
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... print("Minor")

...
Minor

7.3.3 Multi-way selection statement
Multi-way selection is achieved through the if-elif-else statement. elif is
the abbreviation of “else if”. The following code compares two variables and
prints the relation between them.

>>> x=10
>>> y=5
>>> if x < y:
... print(x, "is less than", y)
... elif x > y:
... print(x, "is greater than", y)
... else:
... print(x, "and", y, "are equal")
...
10 is greater than 5

The multi-way if statement is called chained conditional execution.

7.4 Repetition statements or loops
Python supports two types of loops – those that repeat an action a fixed number
of times (definite iteration) and those that act until a condition becomes false
(conditional iteration).

7.4.1 Definite iteration: The for loop
We now examine Python’s for loop, the control statement supporting definite
iteration. We use for in association with the range() function that dictates
the number of iterations. To be precise, range(k) when used with for causes
the loop to iterate k times. See the example below that prints “Hello” 5 times.

>>> for i in range(5):
... print("Hello")
...
Hello
Hello
Hello
Hello
Hello
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range(k) starts counting from 0, incrementing after each iteration, and stops
on reaching k − 1. Thus to print numbers from 0 to 4, you write:

>>> for i in range(5):
... print(i)
...
0
1
2
3
4

You are reminded that range(5) counts from 0 to 4, not 5. To get the numbers
on the same line you need to write print(count,end=" "). By using end =
" ", the Python interpreter will append whitespace following the count value,
instead of the default newline character ('\n') See below:

>>> for i in range(5):
... print(i,end=" ")
...
0 1 2 3 4

RLoops that count through a range of numbers are called count-controlled
loops.

By default, the for loop starts counting from 0. To count from an explicit
lower bound, you need to include it as part of the range function. See the
example below that prints the first 10 natural numbers:

>>> for count in range(1,11):
... print(count,end=" ")
...
1 2 3 4 5 6 7 8 9 10

The for loops we have seen till now count through consecutive numbers in each
iteration. Python provides a third variant of the for loop that allows to count
in a non-consecutive fashion. For this, you need to explicitly mention the step
size in the range function. The following code prints the even numbers between
4 and 20 (both inclusive).

>>> for i in range(4,21,2):
... print(i,end=" ")
...
4 6 8 10 12 14 16 18 20



7.4. REPETITION STATEMENTS OR LOOPS 103

When the step size is negative, the loop variable is decremented by that amount
in each iteration. The following code displays numbers from 10 down to 1.

>>> for count in range(10,0,-1):
... print(count,end=" ")
...
10 9 8 7 6 5 4 3 2 1

Notice above that, to count from 10 down to 1, we write for count in range(10,0,-1)
and not for count in range(10,1,-1). Thus, to count from a down to b, we
write for count in range(a,b-1,s) with a > b and s < 0.

7.4.2 Conditional Iteration: The while loop
Conditional iteration requires that a condition be tested within the loop to
determine whether the loop should continue. Python’s while loop is tailor-
made for this type of control logic. Here is the code to print the first 10 natural
numbers, but this time with while.

>>> i=1
>>> while i<=10:
... print(i,end=" ")
... i=i+1
...
1 2 3 4 5 6 7 8 9 10

RThere is no exit-controlled loop in Python, but you can modify the
while loop to achieve the same functionality.

7.4.3 Nested loops
It is possible to have a loop inside another loop. We can have a for loop inside
a while loop or inside another for loop. The same is possible for while loops
too. The enclosing loop is called the outer loop, and the other loop is called
the inner loop. The inner loop will be executed once for each iteration of the
outer loop: Consider the following code:

>>> for i in range(1,5): #This is the outer loop
... for j in range(1,5): #This is the inner loop
... print(j, end=" ")
... print()
...
1 2 3 4
1 2 3 4
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1 2 3 4
1 2 3 4

The loop variable i varies from 1 to 4 (not 5). For each value of i, the variable
j varies from 1 to 4. The statement print(j, end=" ") prints the j values on
a single line, and the statement print() takes the control to the next line after
every iteration of the outer loop.

7.4.4 Loop control statements
Python provides three loop control statements that control the flow of execution
in a loop. These are discussed below:

7.4.4.1 break statement

The break statement is used to terminate loops. Any statements inside the
loop following the break will be neglected, and the control goes out of the loop.
break stops the current iteration and skips the succeeding iterations (if any)
and passes the control to the first statement following (outside) the loop. This
is illustrated in the following code:

for num in range(1,5):
if num%2==0:

print(num,"is even")
break

print("The number is",num)
print("Outside the loop")

This code produces the output:

The number is 1
2 is even
Outside the loop

7.4.4.2 continue statement

The continue statement is used to bypass the remainder of the current iteration
through a loop. The loop does not terminate when a continue statement is
encountered. Rather, the remaining loop statements are skipped and the control
proceeds directly to the next pass through the loop. See the code below:

for num in range(1,5):
if num%2==0:

print(num,"is even")
continue

print("The number is",num)
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print("Outside the loop")

The code above produces the output:

The number is 1
2 is even
The number is 3
4 is even
Outside the loop

7.4.4.3 pass statement

The pass statement is equivalent to the statement “Do nothing”. It can be used
when a statement is required syntactically but the program requires no action.
Nothing happens when pass is executed. It results in a NOP (No OPeration).
After the pass is executed, control proceeds as usual to the next statement in
the loop. The code below illustrates this:

for num in range(1,5):
if num%2==0:

print(num,"is even")
pass

print("The number is",num)
print("Outside the loop")

This code produces the output:

The number is 1
2 is even
The number is 2
The number is 3
4 is even
The number is 4
Outside the loop

pass statement is useful when you want to insert empty code (empty lines) in
a program, where real code statements can be added later. Empty code is not
allowed in loops; if included, Python will raise errors. In such situations, pass
statement acts as a temporary placeholder.

7.5 Short-Circuit Evaluation
Python sometimes knows the value of a Boolean expression before it has evalu-
ated all of its operands. For instance, in the expression A and B, if A is False,
then so is the expression, and there is no need to evaluate B.
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Similarly in the expression A or B, if A is True, then so is the expression,
and again, there is no need to evaluate B. This approach, in which evaluation
stops as early as possible, is called short-circuit evaluation. This is especially
advantageous if B itself is a complex expression whose evaluation can be avoided.

Short circuit evaluation can be useful in avoiding errors. For example, con-
sider the following code causing zero division error:

>>> a=10
>>> b=0
>>> print(a/b)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero

Now let us modify the code to exploit the short circuit evaluation to avoid the
zero division error. The modified code follows:

>>> a=10
>>> b=0
>>> if b>0 and a/b>0:
... print(a/b)
...
>>>

Since b > 0 evaluates to false, short-circuit evaluation helps skip determining
a/b in the latter part of the condition within the if statement. Had short-circuit
evaluation not been in place, a/b>0 would have raised an error.

7.6 Programming examples
Program 7.12. To print the absolute value of an integer.

num=int(input("Enter a number"))
if num>=0:

abs=num
else:

abs=-num
print("The absolute value of",num,"is",abs)

Program 7.13. To check if the input number is odd or even.

num=int(input("Enter a number"))
if num%2==0:

print(num,"is even")
else:
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print(num,"is odd")

Program 7.14. To check if the input number is positive or not.

num=int(input("Enter a number"))
if num>0:

print(num,"is positive")
elif num<0:

print(num,"is negative")
else:

print(num,"is neither positive nor negative")

Program 7.15. To determine the rate of entry-ticket in a trade fair based on
age as follows:

Age Rate

< 10 7

≥ 10 and < 60 10

≥ 60 5

age=int(input("Enter the age"))
if age<10:

fare=7
elif age>=10 and age<60:

fare=10
else:

fare=5
print("The ticket fare is",fare)

Program 7.16. To determine the maximum of two numbers.

a=int(input("Enter the first number"))
b=int(input("Enter the second number"))
if a>b:

large=a
else:

large=b
print("The larger of",a,"and",b,"is",large)

Program 7.17. To find the smallest of three numbers.

a=int(input("Enter the first number"))
b=int(input("Enter the second number"))
c=int(input("Enter the third number"))
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if a<b:
small=a

else:
small=b

if c<small:
small=c

print("The smallest of",a,",",b,"and",c,"is",small)

Program 7.18. To determine whether a year is a leap year or not.

A year is a leap year if any of the following two conditions are true:

1. the year is divisible by 4 but not by 100

2. if the year is divisible by 100, then it should be divisible by 400 too

The second condition is equivalent to writing

2. the year is divisible by 400

as a number divisible by 400 is also divisible by 100. This logic results in the
following code:

year = int(input("Type a year: "))
if (year%4==0 and year%100!=0) or year%400==0:

print(year,"is a leap-year")
else:

print(year,"is not a leap-year")

Program 7.19. To solve a quadratic equation.

import math
import cmath
a = int(input("Enter the coefficient a: "))
b = int(input("Enter the coefficient b: "))
c = int(input("Enter the coefficient c: "))
d = (b**2) - (4*a*c)
if d > 0:

print("The equation has two distinct real roots")
sol1 = (-b+math.sqrt(d))/(2*a)
sol2 = (-b-math.sqrt(d))/(2*a)
print("The roots are: ", sol1, "and", sol2)

elif d == 0:
print("The equation has only one distinct root")
sol = (-b)/2*a
print("The root is: ", sol)

else:
print("The equation has two distinct complex roots")
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sol1 = (-b-cmath.sqrt(d))/(2*a)
sol2 = (-b+cmath.sqrt(d))/(2*a)
print("The roots are: ", sol1, "and", sol2)

R math.sqrt(d) requires d≥0. When d<0, you should use cmath.sqrt(d)
instead. cmath means complex math.

Program 7.20. To determine the sum of the first n even numbers.

n=int(input("Enter the value of n"))
sum=0
for i in range(2,(2*n)+1,2):

sum+=i
print("The sum of first",n,"even numbers is",sum)

Program 7.21. To determine the average of n numbers entered by the user.

n=int(input("Enter the value of n"))
sum=0
for i in range(n):

num=int(input("Enter the number"))
sum+=num

avg=sum/n
print("The average of the entered numbers is",avg)

Program 7.22. To find the sum of all odd numbers in a list of n numbers
entered by the user.

n=int(input("Enter the value of n"))
sum=0
for i in range(n):

num=int(input("Enter the number"))
if num%2!=0: #if the number is odd

sum+=num #add to sum
print("The sum of the entered numbers is",sum)

Program 7.23. To find the sum of all multiples of 3 in a list of n numbers
entered by the user.

n=int(input("Enter the value of n"))
sum=0
for i in range(n):

num=int(input("Enter the number"))
if num%3==0:
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sum+=num
print("The sum of the entered numbers is",sum)

Program 7.24. To find the sum of a list of numbers entered by the user. The
user will stop the input by giving the value 999.

sum=0
num=int(input("Enter the number"))
while num!=999:

sum+=num
num=int(input("Enter the number"))

print("The sum of the entered numbers is",sum)

Program 7.25. To determine the largest and smallest in a list of n numbers
entered by the user.

n=int(input("Enter the count of numbers"))
for count in range(n):

num=int(input("Enter the number"))
if count==0:
large=small=num

if num>large:
large=num

if num<small:
small=num

print("The smallest number in the entered list of numbers
is",small)

print("The largest number in the entered list of numbers
is",large)

As was done with pseudocode, we assume the first number input by the user to
be the largest as well as the smallest and then compare other numbers with it.
This is achieved in the code by initializing the small and large variables to the
first number (when count is 0) and then proceeding to compare other numbers
with these variables.

Program 7.26. To print the factorial of a number.

n=int(input("Enter a number"))
fact=1
for f in range(1,n+1):

fact=fact*f
print("The factorial of",num,"is",fact)

Program 7.27. To check if the input number is a prime.
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num=int(input("Enter a number"))
if num==1:

print(num,"is neither prime nor composite")
else:

flag=0
for i in range(2,(num//2)+1):

if num%i==0:
flag=1
break

if flag==0:
print(num,"is a prime number")

else:
print(num,"is not a prime number")

Program 7.28. To check if a number is a perfect number or not. A perfect
number is one whose value is equal to the sum of its factors. For example, 6 is
a perfect number as
6 = 1 + 2 + 3

num=int(input("Enter a number"))
sum=0
for i in range(1,(num//2)+1):

if num%i==0:
sum+=i

if num==sum:
print(num,"is a pefect number")

else:
print(num,"is not a pefect number")

Program 7.29. To print the reverse of a number.

num=int(input("Enter a number"))
n=num
rev=0
while num>0:

d=num%10
rev=rev*10+d
num=num//10

print("The reverse of",n,"is",rev)

Program 7.30. To check if a number is an Armstrong number or not. An
Armstrong number is one whose value is equal to the sum of the cubes of its
digits. For example, 153 is a perfect number as
153 = 13 + 53 + 33

import math
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num=int(input("Enter a number"))
n=num
s=0
d=0
while n>0:

n=n//10
d=d+1

n=num
while n>0:

r=n%10
s+=math.pow(r,d)
n=n//10

if num==s:
print(num,"is an Armstrong number")

else:
print(num,"is not an Armstrong number")

Program 7.31. To print the Fibonacci series whose terms are less than or
equal to a user input limit.

limit=int(input("Enter the limit"))
if limit==0:

print("0")
else:

prev1=0
prev2=1
print(prev1)
print(prev2)
next=prev1+prev2
while next<=limit:

print(next)
prev1=prev2
prev2=next
next=prev1+prev2

Program 7.32. To print the first n terms of Fibonacci series.

count=int(input("Enter the number of terms"))
if count==1:

print("0")
elif count==2:

print("0")
print("1")

else:
prev1=0
prev2=1
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print(prev1)
print(prev2)
for i in range(count-2):

next=prev1+prev2
print(next)
prev1=prev2
prev2=next
next=prev1+prev2

Program 7.33. To print the prime numbers in a given range.

low=int(input("Enter the lower bound"))
high=int(input("Enter the upper bound"))
for num in range(low,high+1):

flag=True
for i in range(2,(num//2)+1):

if num%i==0:
flag=False
break

if flag==True:
print(num)

Program 7.34. To print the Armstrong numbers in a given range.

import math
low=int(input("Enter the lower limit"))
up=int(input("Enter the upper limit"))
print("The Armstrong numbers in the input range is")
for num in range(low,up+1):

n=num
s=0
while num>0:

r=num%10
s+=math.pow(r,3)
num=num//10

if n==s:
print(n)

Program 7.35. To compute the sum of the following series up to n terms:

1 +
x2

2
+

x4

4
+

x6

6
+ · · · · · ·

import math
n=int(input("Enter the number of terms"))
x=int(input("Enter the value of x"))
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sum=1
for i in range(1,n):

sum+=(math.pow(x,2*i))/(2*i)
print("The sum of the series is",sum)

Program 7.36. To compute the sum of the following series up to n terms:

1− x2

2
+

x4

4
− x6

6
+ · · · · · ·

import math
n=int(input("Enter the number of terms"))
x=int(input("Enter the value of x"))
sum=1
for i in range(1,n):

sum=sum+((-1)**i)*((math.pow(x,2*i))/(2*i))
print("The sum of the series is",sum)

Program 7.37. To compute the sum of the following series up to n terms:

1 + (1 + 2) + (1 + 2 + 3) + · · · · · ·+ (1 + 2 + 3 + · · · ·+n)

n=int(input("Enter the number of terms in the series"))
sum=0
for i in range(1,n+1):

for j in range(1,i+1):
sum+=j

print("The sum of the series with",n,"terms is",sum)

7.7 Conclusion
In this chapter, we explored the fundamental control structures of Python: con-
ditional statements (if, elif, else) and iterative constructs (for loop, while loop,
and range). These tools are essential for managing program flow, enabling
decision-making, and performing repetitive tasks. Conditional statements al-
low programs to execute different code blocks based on evaluated conditions,
whereas loops enable repeated execution based on specified criteria. We covered
various examples demonstrating how these structures can be combined to solve
complex problems like factorial calculation and primality testing.

Equipped with control structures, now try to develop a role-playing text-
based adventure game. The game should proceed based on the choices made by
the user. Use if-elif-else to create the basic structure. Also, use the for loop
to randomize the game incorporating replayability.
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7.8 Exercises
1. Recall from your Chemistry classes that aqueous solutions with a pH value

less than 7 are acidic, solutions with a pH value greater than 7 are basic
and those with pH equal to 7 are neutral. Write an algorithm to determine
whether a solution is acidic, basic, or neutral given its pH value.

2. The Population of a town today is 1,00,000. The population has increased
steadily at the rate of 10 percent per year for the last 10 years. Write a
program to determine the population at the end of each year in the last
decade.

3. Write a program to display alternate prime numbers till N (obtain N from
the user).

4. Write a program for a number guessing game. The user must have only
limited attempts at guessing the number, and for every guess, a hint can
be provided to the user. For example, if the user guesses 40, the program
can give a hint to make the next guess higher or lower based on the correct
answer.

5. Write a program to compute and display the sum of all integers that are
divisible by 6 but not by 4, and that lie below a user-given upper limit.

6. Calculate the sum of the digits of each number within a specified range
(from 1 to a user-defined upper limit). Print the sum only if it is prime.

7. Write a program to check whether a particular date (dd-mm-yyyy format)
is valid. Those dates that lie in the range 01-01-1900 to 31-12-2050 are
considered valid.

8. A number is input through the keyboard. Write a program to determine
if it’s palindromic.
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Chapter 8

Functions

“What is this brief mortal life?If not the pursuit of legacy”
– Corlys Velaryon

8.1 Email Builder
In a bustling company, the marketing team was drowning in a sea of weekly
reports. Each client demanded a personalized email, packed with specific data.
Crafting these emails manually was a time-consuming ordeal, prone to errors
and leaving little room for strategic thinking. By breaking down the task into
manageable chunks - fetching data, building email templates, and sending them
off - the team transformed the dreaded chore into an automated process.
Functions can be used to have the same effect on any repetitive task.

8.2 Introduction
Solutions for complex real-world problems are nevertheless going to be simple.
Essentially, you should divide your proposed solution into subtasks. This is the
idea of decomposition. Modularization takes it one step further by keeping
the subtasks as independent as possible. These subtasks are known asmodules.
A module is a named, self-contained block of statements that carries out some
specific, well-defined task. The modules should have minimal interaction among
them so that one module does not affect another.

8.2.1 Motivations for modularization
The modular approach offers several advantages to program development:

1. Promotes re-use: If the system functionality is divided into modules,
other systems can reuse them. Thus, a programmer can build on what
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others have already done, instead of starting from scratch. This also
eliminates redundancy (duplication of code) to a great extent.

2. Hides complexity: Since a module is self-contained, it does whatever
it is intended to. If you want the functionality provided by a module,
you access the module and get it done, without worrying about how the
functionality is achieved. This mechanism is called abstraction.

3. Supports division of labour: Ideally, each module achieves a single
goal. A complex task could be divided into simpler sub-tasks, each of
which can be performed by individual modules. This promotes parallel
operation with different teams working on separate modules, speeding up
the entire process with improved collaboration among the teams.

4. Improves debugging and testing: Since modules have minimal in-
teraction among themselves, you can isolate a module and investigate it
separately to pinpoint errors, if any. Each of the modules can be individ-
ually tested for correctness and efficiency. This reduces the risk when the
modules are integrated to build the big picture.

5. Contributes to scalability: New modules can be added to an exist-
ing system to enhance its functionality. This makes the system scalable
without having to redesign the entire thing.

6. Reduces development costs: The reuse of existing modules contributes
to cost savings in development. Also, the self-containment aspect of mod-
ules makes the system maintenance cost-effective and productive.

In the world of Python, modules are known as functions. A Python program
can be seen as a collection of functions, each of which serves a unique purpose. It
is beneficial to review the box Functions – the gist on page 88 before moving
on. The portion of the function code that implements its functionality is known
as function definition. For built-in functions, the definitions are provided by
the interpreter itself. But, with user-defined functions, it is the duty of the
programmer to define them. When we want to use the functionality provided
by a function, we access it (technically known as a function call) by its name.

8.3 The anatomy of functions
A function should be “defined” before its first use. To define a function, you
specify its name and then write the logic for implementing its functionality. A
function definition looks like this:

def function-name(parameter-list):
statement-1
statement-2
.
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.

.
statement-n
return-statement

• Function definition begins with the keyword def followed by the function
name. Then you have the parameter list – a comma-separated list of
arguments enclosed in a pair of parentheses. This line of the function
definition is called header.

• The block of statements that constitute the function logic (statement-1
to return-statement) is called function body.

• The final statement return exits a function.

• The header has to end with a colon, and the body has to be indented.

• The parameters and the return statement are optional, i.e., you could
write a function without these.

Defining a function is not the end of the game. To use its functionality, you
need to call it. The function will not get executed unless it is called. You call a
function by its name, passing (supplying) the value for each parameter separated
by commas and the entire list enclosed in parentheses. If the function call does
not require any arguments, an empty pair of parentheses must follow the name
of the function. The following example illustrates how a Python function is
defined and called:

>>> def printName(): #This is how you define a function
... name=input("Enter your name")
... print("Hi",name,"! Welcome to the world of functions!")
...
>>> printName() #This is how you call a function
Enter your nameSam
Hi Sam ! Welcome to the world of functions!

Having seen the basics of functions, let us now discuss how a function-based
program works. The way the statements in a program get executed is called
flow of execution or control flow. Execution always begins at the first statement
of the program. Statements are executed one at a time, in order from top
to bottom. Function definitions do not alter the flow of execution – statements
inside the function body are not executed until the function is called. A function
call changes the flow of execution. When a function call is encountered, instead
of going to the next statement, the flow jumps to the body of the function,
executes all the statements there, and then comes back to pick up where it left
off. When the end of the program is reached, the execution terminates.
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8.4 Arguments and return value
Arguments are the way you supply data to a function for processing. The
function performs the operations on the received data and produces the result
which is given back through the return statement. The value that is given back
is known as the return value. Technically, you say that a function “receives”
one or more arguments and “returns” a result. The parameters in the function
definitions are called formal parameters, and those in the function call are
called actual parameters.

The arguments and the return value are both optional. Thus, you can have
four categories of functions as discussed below:

8.4.1 Function with no arguments and no return value

>>> def sum():
... a=int(input("Enter an integer"))
... b=int(input("Enter another integer"))
... s=a+b
... print("The sum of the entered integers is",s)
...
>>> sum()
Enter an integer6
Enter another integer8
The sum of the entered integers is 14

8.4.2 Function with arguments but no return value

>>> def sum(c,d):
... s=c+d
... print("The sum of the entered integers is",s)
...
>>> a=int(input("Enter an integer"))
Enter an integer3
>>> b=int(input("Enter another integer"))
Enter another integer5
>>> sum(a,b)
The sum of the entered integers is 8

8.4.3 Function with return value but no arguments

>>> def sum():
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... a=int(input("Enter an integer"))

... b=int(input("Enter another integer"))

... s=a+b

... return s

...
>>> print("The sum of the entered integers is",sum())
Enter an integer4
Enter another integer7
The sum of the entered integers is 11

8.4.4 Function with arguments and return value

>>> def sum(c,d):
... s=c+d
... return s
...
>>> a=int(input("Enter an integer"))
Enter an integer10
>>> b=int(input("Enter another integer"))
Enter another integer15
>>> print("The sum of the entered integers is",sum(a,b))
The sum of the entered integers is 25

8.5 Algorithm and flowchart for modules
How do you write pseudocode for a problem solution with multiple modules?
For this, you just list out the pseudocode for all the modules. See Figure 8.1
for an example that inputs two numbers, adds them, and prints the sum:

AddIntegers
1 Read(a,b)
2 Sum(a,b)

Sum(a,b)
1 s = a + b
2 Print(s)

Start

Read(a, b)

Sum(a, b)

Stop

Sum(a, b)

S = a+ b

Print(S)

Return

Figure 8.1: Adding two numbers using functions
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What about the flowchart? For each module, we draw flowcharts separately.
Usually, there will be a main module that takes the inputs and makes the
function calls (AddIntegers in the example above). For all modules, the start
block will be replaced by the name of the module itself. For all modules (except
for the main module) that are being called, the stop block will be replaced by
return. See below:

8.6 Variable scope and parameter passing
The region of the program text where a variable’s value can be accessed is
called its scope. Thus, the scope of a variable defines the active regions of the
variable. The variables defined inside a function are said to have local scope.
This means if you try to access the value of a variable outside the function where
it is defined, you are bound to get an error:

>>> def defineVar():
... var=7
...
>>> defineVar()
>>> print(var)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'var' is not defined.

Function calls obey scope rules. When a function is called, the values of the
actual parameters are copied to the formal parameters. The changes made, if
any, to the formal parameters, are not reflected in the calling function. The
changes are made only to the local copy of the formal parameters. See this:

>>> def updateVar(var):
... var+=9
...
>>> var=7
>>> print("The original variable value is ",var)
The original variable value is 7
>>> updateVar(var)
>>> print("The modified variable value is ",var)
The modified variable value is 7

8.7 Keyword arguments and default arguments
The arguments for a function can be specified in two ways:

1. Positional arguments
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2. Named arguments (aka keyword arguments)

Positional arguments are the default way in which arguments are supplied to
a function. Here the values are passed to arguments in the same order in which
they occur in the function definition. When the positions of the arguments are
changed, the values assigned also change. See an example:

>>> def myfun(a,b):
... print("The values of a and b are respectively",a,b)
...
>>> myfun(3,4)
The values of a and b are respectively 3 4
>>> myfun(4,3)
The values of a and b are respectively 4 3

In order not to bother with the order of the parameters, Python has the
mechanism of named arguments or keyword arguments. This allows you
to specify the argument names in the function call along with their values. Since
the argument names are specified, the order of the arguments doesn’t matter.
This is illustrated below:

>>> def myfun(a,b):
... print("The values of a and b are respectively",a,b)
...
>>> myfun(a=3,b=4)
The values of a and b are respectively 3 4
>>> myfun(b=4,a=3)
The values of a and b are respectively 3 4

Default arguments or optional arguments allow you to assign default
values to named arguments. The default values for the arguments are included
while defining the function. When the function is called without passing values
for the default arguments, their default values will be taken. On the other
hand, if the function call includes values for default arguments as well, the
passed values will override the default values. See below:

>>> def sample(a,b=7):
... print("The values of a and b are respectively",a,b)
...
>>> sample(3)
The values of a and b are respectively 3 7
>>> sample(3,4)
The values of a and b are respectively 3 4

You can pass values to default arguments in two ways:

1. by position: Here the values are passed in the order in which the argu-
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ments occur in the function header.

2. by name: Here the values are passed using the argument names in the
function call.

This is illustrated below:

>>> def sample(a,b=7,c=9):
... print("The values of a, b and c are respectively",a,b,c)
...
>>> sample(3)
The values of a, b and c are respectively 3 7 9
>>> sample(3,4) # default values taken by position
The values of a, b and c are respectively 3 4 9
>>> sample(3,c=5) # default values taken by name
The values of a, b and c are respectively 3 7 5

A function can have both default and mandatory (non-default) arguments.
In such cases, the parameter list should start with the mandatory arguments,
then followed by the default arguments. Otherwise, you will get an error as
shown below:

>>> def sample(a=7,b):
File "<stdin>", line 1

def sample(a=7,b):
^

SyntaxError: non-default argument follows default argument

8.8 Programming examples
Program 8.38. To print the absolute value of an integer.

def absoluteValue(x):
if x < 0:

return -x
else:

return x
num=int(input("Enter a number"))
abs=absoluteValue(num)
print("The absolute value of",num,"is",abs)

Program 8.39. To check whether a number is even or not.

def isEven(n):
if n%2==0:
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return True
else:

return False
num=int(input("Enter a number"))
r=isEven(num)
if r==True:

print(num,"is even")
else:

print(num,"is odd")

Program 8.40. To print n lines of the following pattern.

1
1 2
1 2 3
1 2 3 4

def printPattern(n):
for i in range(1,n+1): #each value of i corresponds to
one line

for j in range(1,i+1): #for printing numbers on a
particular row

print(j,end=" ")
print() #to go to next line after

printing one row
n=int(input("Enter the number of lines"))
printPattern(n)

Program 8.41. To print n lines of the following pattern.

1
1 3
1 3 5
1 3 5 7

def printPattern(n):
for i in range(1,n+1): #each value of i corresponds to
one line

for j in range(1,2*i,2): #for printing numbers on a
particular row

print(j,end=" ")
print() #to go to next line after

printing one row
n=int(input("Enter the number of lines"))
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printPattern(n)

Program 8.42. To print n lines of the following pattern.

2
2 4
2 4 6
2 4 6 8

def printPattern(n):
for i in range(1,n+1): #each value of i corresponds to
one line

for j in range(2,2*i+1,2): #for printing numbers on a
particular row

print(j,end=" ")
print() #to go to next line after

printing one row
n=int(input("Enter the number of lines"))
printPattern(n)

Program 8.43. To implement a menu-driven calculator. Use separate func-
tions for the different operations

def add(x, y):
return x + y

def subtract(x, y):
return x - y

def multiply(x, y):
return x * y

def divide(x, y):
return x / y

num1 = int(input("Enter first number: "))
num2 = int(input("Enter second number: "))
print("Select operation.")
print("1.Add")
print("2.Subtract")
print("3.Multiply")
print("4.Divide")
choice = int(input("Enter your choice"))
if choice==1:

result=add(num1,num2)
print(num1,"+",num2,"=",result)

elif choice==2:
result=subtract(num1,num2)
print(num1,"-",num2,"=",result)
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elif choice==3:
result=multiply(num1,num2)
print(num1,"*",num2,"=",result)

elif choice==4:
result=divide(num1,num2)
print(num1,"/",num2,"=",result)

else:
print("Invalid choice")

Program 8.44. To find the sum of a range of numbers.

def sum(l,h):
s=0
for i in range(l,h+1):

s+=i
return s

low=int(input("Enter the lower limit"))
high=int(input("Enter the upper limit"))
a=sum(low,high)
print("The sum of the numbers in the range is",a)

Program 8.45. To print the nth prime number.

def is_prime(num):
for i in range(2,int((num/2))+1):

if (num % i) == 0:
return False

return True
count=0
num=2
n=int(input("Enter the value of n"))
while count<n:

if is_prime(num)==True:
count+=1
if count==n:

print("The",n,"th prime number is",num)
num+=1

8.9 Conclusion
Functions are essential Python constructs for creating reusable code blocks.
They improve code organization, readability, and efficiency. By defining func-
tions with parameters and return values, you can modularize complex tasks.
Understanding function scope is crucial for managing variables within and out-
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side functions. Default, positional, and keyword arguments provide flexibility
in function calls. In a nutshell, functions are indispensable for building well-
structured and maintainable Python programs.

8.10 Exercises
1. Answer the following questions based on the given code snippet:

x = 10
def outer_function(modify=True):

global x
y = 20

def inner_function():
global x
x = x + y
return x

if modify:
inner_function()

else:
x = inner_function() + 10

return x

print(outer_function())

(a) What is the output of the above code?
i. 30
ii. 40
iii. Gives a Error Message
iv. 50

(b) What is the output of the above code if the function call is edited as
outer_function(False)?
i. 30
ii. 40
iii. Gives a Error Message
iv. 50

2. Write a program to input a number and find if it’s a twisted prime or not.
(A number is said to be twisted prime if it is a prime number and its
reverse is also prime. Eg: 97 is a twisted prime number)
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3. Write a program to print the prime factors of a number. (Use a method
isPrime() to check primality).

4. Write a function called determineParkingFare() that calculates the park-
ing fare for customers who park their vehicles in a parking lot. The func-
tion takes the following arguments-

• An integer denoting the type of vehicle: 0 for car, 1 for bus, and 2
for truck.

• An integer between 0 and 24 denoting the hour the vehicle entered
the lot.

• An integer between 0 and 60 denoting the minute the vehicle entered
the lot.

• An integer between 0 and 24 denoting the hour the vehicle left the
lot.

• An integer between 0 and 60 denoting the minute the vehicle left the
lot.

The fare is determined based on the following table:-

Vehicle Duration Charges per hour

Car For first 3 hours Rs. 2

Car Remaining duration Rs. 4

Truck For first 3 hours Rs. 4

Truck Remaining duration Rs. 6

Bus For first 3 hours Rs. 5

Bus Remaining duration Rs. 7

Since there are no fractional charges, round the total duration to the next
highest hour for finding the fare. You should now write a program to
determine the parking fare of n customers.
The fare calculation for a single customer is shown below. (Assume that
the vehicle entered at 13:25 hours and left at 18:20 hours)
Type of vehicle 1
Time In(Hours) 13
Time In(Minutes) 25
Time Out(Hours) 18
Time Out(Minutes) 20
Duration=18.33 ( 18 20

60 hours) - 13.42 (13 25
60 hours) = 4.91 hours

Rounded duration = 5 hours
Parking fare = 3×4 + 2×6 = 24 rupees
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5. Write a program to implement these formulae for permutations and com-
binations.
The Number of permutations of n objects taken r at a time:
p(n, r) = n!/(n− r)!.
The Number of combinations of n objects taken r at a time is:
c(n, r) = n!/(r! ∗ (n− r)!)

6. Generate and print Pascal’s Triangle up to a specified number of rows.
Pascal’s Triangle is a triangular array where each number is the sum of
the two numbers directly above it.
HINT:Use the concept of permutation combination to obtain the se-
quence of the rows

1
1 1 --> c(1,0) c(1,1)
1 2 1 --> c(2,0) c(2,1) c(2,2)
1 3 3 1

1 4 6 4 1



Bibliography

[1] Kenneth A. Lambert, Fundamentals of Python: First Programs, Cengage
Learning, 2019.

[2] Yashavant Kanetkar, Let Us Python, BPB Publication, 2022.

[3] John V Guttag, Introduction to Computation and Programming Using
Python, MIT Press, 2013.

[4] Allen Downey, How to Think Like a Computer Scientist: Learning with
Python, O’Reilly Media, 2015.

131



Chapter 9

Strings

“Just as words are the foundation of writing, strings are the foundation of text
processing in programming.”

- Anonymous

9.1 Event Invitation Generator
Imagine an event invitation generator that eliminates the hassle of planning par-
ties and gatherings. You simply input the details—like the event name, date,
and guest list—and the tool automatically creates personalized invitations for
each guest. It even customizes messages based on the recipient’s relationship
with the host, making every invite feel unique and thoughtful. Behind the
scenes, this program uses string manipulation to merge your input with beau-
tifully crafted text templates, ensuring that each invitation is both professional
and personal, all done with just a few clicks.

9.2 Introduction
A string is a sequence of zero or more characters. Each character in the string
occupies one byte of memory, and the last character is always ‘\0’ which is
called the null character. The terminating null character is important because
it is the way by which, the Python interpreter knows where the string ends.

Figure 9.1 shows how a string “Hello World” is stored in memory. Notice
the null character at the end. The figure also shows how the character positions
are numbered starting with 0 from the left end or starting with -1 from the right
end. Each character position is known as an index. The null character position
is not numbered. It is not considered a part of the string; its sole purpose is to
know the string boundary.
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H e l l o W o r l d \0

0 1 2 3 4 5 6 7 8 9 10

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

Figure 9.1: A string stored in memory

To know the length of a string, you use the len() method as shown below:

>>> str="Hello World"
>>> print(len(str))
11

As expected, the null character is not counted while finding the string length.

9.3 The subscript operator
To print a single character out of the string, you should use the subscript
operator. The subscript operator (also called bracket operator) is denoted by
[ ]. You just want to mention the index whose character you want to print.
Here are some illustrations:

>>> str="Algorithmic thinking"
>>> print(str[0])
A
>>> print(str[5])
i
>>> print(str[11])

>>> print(str[18])
n
>>> print(str[20])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: string index out of range
>>> print(str[19])
g

In the example above, the string length is 20; this means that the last index is
19. Thus, if you try to print the character in the 20th position, you get an error.

Python also allows negative subscript values. In this case, you need to count
backward from -1 to access characters from the right end of the string. See
below:
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>>> str="Try out!"
>>> print(str[-1])
!
>>> print(str[-3])
u
>>> print(str[-9])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: string index out of range

It is invalid to use the [ ] operator on the left side of an assignment, with
the intention of changing a character in a string. See the example below:

>>> pet="cat"
>>> pet[0]='r'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

As expected, the code results in an error (Thank God! Who wants a rat as a
pet?).
The “object” mentioned in the error is the string and the “item” is the character
we tried to assign. The reason for the error is that strings are immutable, which
means you can’t change an existing string.

9.4 Traversing a string
Accessing the string characters one at a time, starting from the beginning and
moving towards the end, is called traversal. The for loop comes in handy for
this:

>>> str="Hi there"
>>> for c in str:
... print(c)
...
H
i

t
h
e
r
e
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9.5 Concatenation and repetition operators
The + operator performs concatenation, which means joining the strings by
linking them end-to-end. See the example:

>>> str1="Python"
>>> str2="Program"
>>> print(str1+str2)
PythonProgram

Note that the concatenation operator does not insert any white space between
the joined strings.

The * operator performs repetition. It repeats a given string some fixed number
of times. The left operand for * is the string to be repeated, and the right
operand is an integer denoting the number of times the string is to be repeated.
See the code:

>>> str="Order!"
>>> print(str*3)
Order!Order!Order!

9.6 String slicing
To extract a substring out of a given string, you should use subscript operator
[:]. The operator [n:m] returns the part of the string starting at position n
and ending at position m-1. See the example below:

>>> languages="Python, Java and C++"
>>> print(languages[0:6])
Python
>>> print(languages[8:12])
Java
>>> print(languages[17:20])
C++

If n≥m, the operator [n:m] results in an empty string. See the code:

>>> languages="Python, Java and C++"
>>> print(languages[4:4])

>>>

The indices n and m in the operator [n:m] are optional. If you omit the first
index n, the slice starts at the beginning of the string. If you omit the second
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index m, the slice goes to the end of the string. An example follows:

>>> languages="Python, Java and C++"
>>> print(languages[:6])
Python
>>> print(languages[17:])
C++

When m is omitted, supplying a negative value to the index n prints the last few
characters of the string. To be specific, str[-k:] prints the last k characters
of str. See the example below:

>>> languages="Python, Java and C++"
>>> print(languages[-3:])
C++

Omitting both indices n and m prints the full string. See below:

>>> languages="Python, Java and C++"
>>> print(languages[:])
Python, Java and C++

In addition to mentioning start and end indices in the slicing operator, you can
also specify the step that denotes the distance between the characters you want
to include in the resultant string. Suppose you want to print every alternate
character in a string str, you just use the operator [::2]. See an example:

>>> languages="Python, Java and C++"
>>> print(languages[::2])
Pto,Jv n +

Since the start and end indices are omitted, the slice starts from the beginning of
the string and goes to its end. Since the step is mentioned as 2, every alternate
character will be selected.

9.7 Comparison operators on strings
The comparison operators work on strings as well. To see if two strings are
equal, we simply use the equality operator:

>>> str1="python"
>>> str2="pythen"
>>> print(str1==str2)
False
>>> str2="python"
>>> print(str1==str2)
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True

Other comparison operations are useful for determining the lexicographic (al-
phabetical) order of strings. The comparison operator when used with strings
compares the ASCII values of the corresponding characters in the strings. Since
the ASCII values are assigned in increasing order, a character that has a lower
ASCII value precedes (comes before alphabetically) another character with a
higher ASCII value. See the code below:

>>> str1="C"
>>> str2="Java"
>>> if str1 < str2:
... print(str1,"comes before",str2)
... elif str2 < str1:
... print(str2,"comes before",str1)
... else:
... print("The two strings are the same")
...
C comes before Java

9.8 The in operator
in is a boolean operator that takes two strings and returns True if the first
appears as a substring in the second and False otherwise. See the example
below:

>>> str1="C"
>>> str2="C++"
>>> str3="Python"
>>> print(str1 in str2)
True
>>> print(str1 in str3)
False
>>> print(str2 in str1)
False

The in operator can be used to print the characters that are present in (common
to) two given strings as follows:

>>> str1="algorithms"
>>> str2="problem solving"
>>> for c in str1:
... if c in str2:
... print(c,end=" ")
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...
l g o r i m s

9.9 The string module
The string module contains string methods that can be used to manipulate
strings. Table 9.1 lists some of the string methods. To use them, you have to
first import the module:

import string

Table 9.1: Some useful string methods, s represents to a string

String method Purpose

s.count(sub, start, end)

Returns the number of non-overlapping
occurrences of substring sub in the por-
tion of s starting from start and end-
ing at end-1.

s.find(sub, start, end)

Returns the index of the first occur-
rence of the substring sub in the portion
of s starting from start and ending at
end-1.

s.replace(old, new, count)

Returns a copy of s with all occurrences
of substring old replaced by new. If
the optional argument count is given,
only the first count occurrences are re-
placed.

s.isalpha() Returns True if s contains only letters
or False otherwise.

s.isdigit() Returns True if s contains only digits
or False otherwise.

s.lower() Returns a copy of s converted to lower-
case.

s.upper() Returns a copy of s converted to upper-
case.
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RThe parameters start and end are optional in the methods find()
and count(). If not present, the entire string is considered.

Rfind() returns -1 if the substring to be searched is not present in the
given string.

The following example illustrates the use of some of the string methods.

>>> import string
>>> s="malayalam"
>>> str1="string"
>>> str2="STR2"
>>> print(s.find("al"))
1
>>> print(s.find("al",2))
5
>>> print(s.find("al",2,5))
-1
>>> print(s.count("al"))
2
>>> print(s.count("al",2))
1
>>> print(s.count("al",2,5))
0
>>> print(s.replace("la","pq"))
mapqyapqm
>>> print(s.replace("la","pq",1))
mapqyalam
>>> print(str1.isalpha())
True
>>> print(str2.isalpha())
False
>>> print(str1.upper())
STRING
>>> print(str2.lower())
str2

In addition to string methods, the string module also provides several string
constants; some of which are illustrated below:

>>> import string
>>> print(string.ascii_lowercase)
abcdefghijklmnopqrstuvwxyz
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>>> print(string.ascii_uppercase)
ABCDEFGHIJKLMNOPQRSTUVWXYZ
>>> print(string.ascii_letters)
abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ
>>> print(string.digits)
0123456789

You can use these constants to test whether a character is upper-case or lower-
case, or whether it is a digit. See below:

>>> import string
>>> ch='p'
>>> print(ch in string.ascii_lowercase)
True

9.10 Programming examples
Program 9.46. To count the occurrences of a character in a string without
using the count method.

str=input("Enter a string")
ch=input("Enter the character to search for")
count=0
for char in str:

if char==ch:
count+=1

print(ch,"occurs",count,"times in",str)

Program 9.47. To count the occurrences of lower-case letters, upper-case
letters, vowels, digits, and blank spaces in a string.

import string
def is_lower(s):

return s in string.ascii_lowercase
def is_upper(s):

return s in string.ascii_uppercase
def is_digit(s):

return s in string.digits
def is_vowel(s):

return s in "aeiouAEIOU"
def is_consonant(s):

return s in "bcdfghjklmnpqrstvwxyzBCDFGHJKLMNPQRSTVWXYZ"
def is_space(s):

return s in string.whitespace
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str=input("Enter a string")
countL=countU=countD=countV=countC=countS=0
length=len(str)
for char in str:

if is_lower(char)==True:
countL+=1

if is_upper(char)==True:
countU+=1

if is_digit(char)==True:
countD+=1

if is_vowel(char)==True:
countV+=1

if is_consonant(char)==True:
countC+=1

if is_space(char)==True:
countS+=1

if is_space(str[0])==False and is_space(str[length-1])==False:
countW=countS+1

elif is_space(str[0])==True and is_space(str[length-1])==True:
countW=countS-1

else:
countW=countS

print("The string",str,"has")
print(countL,"lower case letters")
print(countU,"upper case letters")
print(countD,"digits")
print(countV,"vowels")
print(countC,"consonants")
print(countS,"blank spaces")
print(countW,"words")

Program 9.48. To print all the prefixes and suffixes of a string.

str=input("Enter a string")
length=len(str)
print("The prefixes of",str,"are")
for index in range(1,length+1):

print(str[0:index])
print("The suffixes of",str,"are")
for index in range(length):

print(str[index:length])

This code will produce the following output when the string python is input:

The prefixes of python are
p
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py
pyt
pyth
pytho
python
The suffixes of python are
python
ython
thon
hon
on
n

Program 9.49. To reverse a string.

def reverse(str):
r = ""
index = len(str)-1
while index>=0:

r += str[index]
index -= 1

return r
s=input("Enter a string")
rev=reverse(s)
print("The reverse of the string is",rev)

Program 9.50. To check whether a string is a palindrome or not. Use
functions.

def is_palindrome(str):
length = len(str)
if length==1:

return True
else:

for i in range(length//2):
if str[i] != str[length-1-i]:

return False
return True

s=input("Enter a string")
flag=is_palindrome(s)
if flag==True:

print(s,"is a palindrome")
else:

print(s,"is not a palindrome")
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Program 9.51. To check whether a string is a palindrome or not. Use
recursion.

def is_palindrome(str):
length=len(str)
if length == 1:

return True
if str[0] != str[length-1]:

return False
else:

return is_palindrome(str[1:length-1])
s=input("Enter a string")
flag=is_palindrome(s)
if flag==True:

print(s,"is a palindrome")
else:

print(s,"is not a palindrome")

Program 9.52. To convert a binary number to decimal.

bstring = input("Enter a binary number")
decimal = 0
exponent = len(bstring) - 1
for digit in bstring:

decimal = decimal + int(digit)*2**exponent
exponent = exponent - 1

print("The decimal equivalent of",bstring,"is", decimal)

Program 9.53. To convert a decimal number to binary.

decimal = int(input("Enter a decimal integer"))
if decimal == 0 or decimal == 1:

binary=decimal
else:

d=decimal
binary = " "
while decimal > 0:

remainder = decimal % 2
decimal = decimal // 2
binary = str(remainder) + binary

print("The binary equivalent of",d,"is",binary)
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9.11 Conclusion
This chapter provided a comprehensive introduction to strings in Python, start-
ing from the basics and gradually covering more advanced topics. We explored
how strings are represented and stored in memory, and learned various tech-
niques to manipulate them, such as traversing, concatenating, and slicing. By
understanding the use of string operators and various methods from the string
module, you now have the foundational knowledge needed to work efficiently
with strings in Python. With these tools at your disposal, you can handle text
data more effectively in your future programming endeavors.

9.12 Exercises
1. Predict the output:

str="bcfhmprs"
for char in str:

print(char+"at",end=" ")

2. Write a program to input a character and check if it’s a special character
or not.

3. Write a program to count the number of words in a sentence.

4. Write a program that takes a binary number as string input and prints
whether the number is odd or even.

5. Write a program to input a word and replace all alternate characters with
$.

6. Write a program to read a sentence. Print all capital letters first, then
small letters, then digits, and at last special characters. Print it as a new
word.

7. Write a program to input a sentence. Frame a new sentence with the last
word first and then the first word. Print it in capital letters.
Eg: Input : Exam is Easy Output : EASY EXAM.

8. Write a program to input a word and display it in PIGLATIN form.
(The first vowel occurring in the input word is placed at the start of the
new word along with the remaining alphabets of it. The alphabets present
before the first vowel ia shifted at the end of the new word, followed by
”ay”.)
Eg: Input = PARIS Output = ARISPay

Input = amazon Output = amazonay
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9. Write a program to input a word and print it in the pattern as shown
below.
eg: For PIZZA, print like below:

A
ZZ
ZZZ
IIII
PPPPP
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Chapter 10

Lists and tuples

“The art of simplicity is a puzzle of complexity.”
- Douglas Horton

“Immutability is a powerful concept; it ensures that data remains reliable and
predictable.”

- Robert C. Martin

10.1 Restaurant Order Management System
In a busy restaurant, waiters struggled to track multiple orders, especially

during peak hours. The process of writing down orders, calculating bills man-
ually, and updating the kitchen staff was time-consuming and prone to errors.
This often led to mix-ups and frustrated customers.

This can be automated using lists and tuples where we store each order as
a list of items, with each item represented as a tuple containing the dish name,
quantity, and price. This allows the system to easily calculate totals, apply dis-
counts, and send correct orders to the kitchen. The result is a streamlined order
management system that reduces errors, improves service speed, and allows the
staff to focus more on customer satisfaction.

Lists and tuples help to manage and process complex orders efficiently, en-
suring smooth operation during busy periods.

10.2 Lists
A list is an ordered set of data values. The values that make up a list are called
its elements or items. The logical structure of a list is similar to that of a
string. Each item in the list has a unique index that specifies its position and
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the items are ordered by their positions. Unlike strings, where each element is
a character, the items in a list can be of different data types.

10.2.1 Creating lists

To create a new list; you simply enclose the elements in a pair of square brackets
([ ]). Following are some examples:

>>> newlist=[10,"hi",3.14]
>>> print(newlist)
[10, 'hi', 3.14]
>>> mynest=[2,4,[1,3]]
>>> print(mynest)
[2, 4, [1, 3]]

As in mynest above, a list can have another list as its element. Such a list is
called nested list. The list [1,3] which is an element of mynest is called a
member list. A list that contains no elements is called an empty list, denoted as
[ ].
Lists of integers can also be built using the range() and list() functions. See
some examples now:

>>> digits=list(range(10))
>>> print(digits)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> naturals=list(range(1,11))
>>> print(naturals)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> mul5=list(range(10,50,5))
>>> print(mul5)
[10, 15, 20, 25, 30, 35, 40, 45]

Once a list is created, you can determine its length (number of elements in the
list) using the len() method. In the case of a nested list, the member list will
be counted as a single element. See examples below:

>>> languages=["C","Java","Python","C++"]
>>> print(len(languages))
4
>>> breakfast=["dosa","chapathi",["bread","butter","jam"]]
>>> print(len(breakfast))
3
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10.2.2 Accessing list elements and traversal
List indices work the same way as string indices. Thus you can use the subscript
operator to access the list elements. See some examples:

>>> newnest=[10, 20, [25, 30], 40]
>>> print(newnest[0])
10
>>> print(newnest[2])
[25, 30]
>>> print(newnest[-1])
40
>>> print(newnest[4])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range
>>> print(newnest[5-4])
20
>>> print(newnest[1.0])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: list indices must be integers or slices, not float
>>> print(newnest[-5])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range

You could also use an expression as an index in the subscript operator, as in
newnest[5-4] in the example above. The interpreter will evaluate the expres-
sion to determine the index.

Printing the list by specifying its name in the print method displays the
list elements enclosed in a pair of brackets. To display the entire list without
the brackets themselves, you should traverse the list printing the elements one
by one. See below:

>>> prime=[2,3,5,7,11]
>>> for p in prime:
... print(p,end=" ")
...
2 3 5 7 11

10.2.3 List Comprehension
Creating a new list from an existing list is called list comprehension. Assume
you have a list of numbers from which you want to create another list consisting
only of odd numbers in the original list. This can be done by using a for loop
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to traverse the original list and copying the odd numbers to a second list. But
with list comprehension, life is far more easy! See below:

>>> numbers = [1, 28, 73, 4, 100, 358, 75, 208]
>>> odd = [num for num in numbers if num%2 != 0]
>>> print(odd)
[1, 73, 75]

The statement

odd = [num for num in numbers if num%2 != 0]

essentially directs the interpreter to iterate through the list numbers and copy
all odd numbers to another list odd.

Suppose, now you need to create a list of two-digit even numbers, you could use
comprehension:

>>> even2dig = [num for num in range(10,100) if num%2 == 0]
>>> print(even2dig)
[10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38,

40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68,
70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98]

Here, range(10,100) generates two digit numbers and the condition if num%2
== 0 makes sure that only the even numbers are included in the constructed
list.
Finally, assume you want to replace all multiples of 5 (less than 30) with -1, you
just resort to comprehension:

>>> nomul5 = [num if num%5 != 0 else -1 for num in range(20)]
>>> print(nomul5)
[-1, 1, 2, 3, 4, -1, 6, 7, 8, 9, -1, 11, 12, 13, 14, -1, 16,

17, 18, 19]

The interpreter generates two-digit numbers less than 20 and then puts the
generated number into the constructed list if it is not a multiple of 5, otherwise
puts a -1 into the list.

10.2.4 List operations
The + operator concatenates lists:

>>> prime=[2,3,5,7]
>>> composite=[4,6,8,10]
>>> numbers=prime+composite
>>> print(numbers)
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[2, 3, 5, 7, 4, 6, 8, 10]

The * operator repeats a list a given number of times:

>>> binary=[0,1]
>>> bytesequence=binary*4
>>> print(bytesequence)
[0, 1, 0, 1, 0, 1, 0, 1]

Equality operator works well on lists. It checks if two lists have the same
elements. See an example:

>>> even=[2,4,6,8]
>>> mul2=[2,4,6,8]
>>> print(even==mul2)
True
>>> composite=[4,6,8]
>>> print(even==composite)
False

Other relational operators also work with lists. Consider:

>>> prime=[2,3,5]
>>> even=[2,4,6]
>>> print(prime>even)
False

Python starts by comparing the first element from each list. If they are equal,
it goes on to the next element, and so on, until it finds the first pair of elements
that are different and determines the relation between them. In the above
example, prime[0] == even[0]. Next, prime[1] and even[1] are compared.
Thus the resulting relation is ‘<’ and prime > even is thus False. Note that
once the result is determined, the subsequent elements are skipped. See below:

>>> prime=[2,3,7]
>>> even=[2,4,6]
>>> print(prime>even)
False

Membership operators can be applied to a list as well. See below:

>>> even=[2,4,6,8]
>>> composite=[4,6,8]
>>> print(2 in even)
True
>>> print(2 in composite)
False
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>>> print(3 not in composite)
True

10.2.5 List slices
The slice operator on a list follows the same rules as applied to strings. See
some illustrations:

>>>sequence=["strings","lists","tuples","bytearrays",
"bytesequences","range objects"]
>>> print(sequence[:])
['strings', 'lists', 'tuples', 'bytearrays', 'bytesequences',

'range objects']
>>> print(sequence[1:4])
['lists', 'tuples', 'bytearrays']
>>> print(sequence[:3])
['strings', 'lists', 'tuples']
>>> print(sequence[3:])
['bytearrays', 'bytesequences', 'range objects']

10.2.6 List mutations
Unlike strings, lists are mutable. In other words, a list is updatable – elements
can be inserted, removed, or replaced. You use the subscript operator to replace
an element at a given position:

>>> even=[2,4,5,8]
>>> even[2]=6
>>> print(even)
[2, 4, 6, 8]

You can also replace a single list item with a new list. See below:

>>> even=[2,4,6,8]
>>> even[3]=[8,10]
>>> print(even)
[2, 4, 6, [8, 10]]

10.2.6.1 Slice operator and mutations

The slice operator is a nice tool to mutate lists in terms of replacing, inserting,
or removing list elements.

Replacing elements
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You can use the slice operator to replace a single element or multiple elements
in a list. See an example below:

>>> composite=[13,17,19,23,25,27,37,41]
>>> composite[4:6]=[29,31]
>>> print(composite)
[13, 17, 19, 23, 29, 31, 37, 41]
>>> odd=[1,3,5,8]
>>> odd[3:4]=[7]
>>> print(odd)
[1, 3, 5, 7]

Inserting elements

The slice operator is useful for inserting new elements into a list at the desired
location:

>>> prime=[2,3,5,7,13,17,19]
>>> prime[4:4]=[11]
>>> print(prime)
[2, 3, 5, 7, 11, 13, 17, 19]
>>> composite=[2,10,12]
>>> composite[1:1]=[4,6,8]
>>> print(composite)
[2, 4, 6, 8, 10, 12]

Removing elements

The slice operator can also be used to remove elements from a list by assigning
the empty list to them. Examples follow:

>>> composite=[3,5,7,9,11]
>>> composite[3:4]=[]
>>> print(composite)
[3, 5, 7, 11]
>>> composite=[29,31,33,35,37]
>>> composite[2:4]=[]
>>> print(composite)
[29, 31, 37]

10.2.6.2 Using del keyword for deletion

Assigning a list element to an empty list for deletion is cumbersome. As an al-
ternative, Python provides the del keyword exclusively for deletion. See below:
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>>> composite=[3,5,7,9,11]
>>> del composite[3]
>>> print(composite)
[3, 5, 7, 11]
>>> composite=[29,31,33,35,37]
>>> del composite[2:4]
>>> print(composite)
[29, 31, 37]
>>> del composite[6]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list assignment index out of range

As illustrated above, del causes a runtime error if the index is out of range.

10.2.7 List methods
The list type includes several methods for inserting and removing elements.
These methods are summarized in Table 10.1.

Table 10.1: Some useful list methods. L denotes a list

List method Purpose

L.index(element) Returns the position of element in the list L. It produces
an error if there is no such element.

L.insert(position, element) Inserts element at position if position is less than the
length of L . Otherwise, inserts element at the end of L .

L.append(element) Inserts element at the end of L.

L.extend(aList) Inserts the elements of the list aList to the end of L.

L.remove(element) Removes element from the list L. It throws an error if there
is no such element.

L.pop() Removes and returns the element at the end of L .

L.pop(position) Removes and returns the element at position in the list L.

L.count(element) Returns the number of times element appears in the list L.

L.sort(element) Sorts (arrange in ascending order) the elements of the list
L.

L.reverse() Reverses the elements of the list L.

The following illustrates the use of the various list methods:
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>>> a = [66.25, 333, 333, 7, 1, 1234.5]
>>> print("Index of 1 is",a.index(1))
Index of 1 is 4
>>> print("Index of 333 is",a.index(333))
Index of 333 is 1
>>> a.insert(2,4587)
>>> a.insert(8,-55)
>>> print("After inserting 4587 and -55, the list is",a)
After inserting 4587 and -55, the list is [66.25, 333, 4587,

333, 7, 1, 1234.5, -55]
>>> a.append(200)
>>> print("The list on appending 200 is",a)
The list on appending 200 is [66.25, 333, 4587, 333, 7, 1,

1234.5, -55, 200]
>>> a.sort()
>>> print("The list after sorting is",a)
The list after sorting is [-55, 1, 7, 66.25, 200, 333, 333,

1234.5, 4587]
>>> b=['a',25.47,'c',7,18]
>>> a.extend(b)
>>> print("The list a after extending with elements of b is",a)
The list a after extending with elements of b is [-55, 1, 7,

66.25, 200, 333, 333, 1234.5, 4587, 'a', 25.47, 'c', 7, 18]
>>> a.remove(1)
>>> print("The list a after removing 1 is",a)
The list a after removing 1 is [-55, 7, 66.25, 200, 333, 333,

1234.5, 4587, 'a', 25.47, 'c', 7, 18]
>>> a.remove(333)
>>> print("The list a after removing 333 is",a)
The list a after removing 333 is [-55, 7, 66.25, 200, 333,

1234.5, 4587, 'a', 25.47, 'c', 7, 18]
>>> x=a.pop()
>>> print("The element popped from the list a is",x)
The element popped from the list a is 18
>>> a.pop(6)
4587
>>> print("The list a after popping element at position 6 is",a)
The list a after popping element at position 6 is [-55, 7,

66.25, 200, 333, 1234.5, 'a', 25.47, 'c', 7]
>>> print("The list a has",a.count(7),"occurrences of 7")
The list a has 2 occurrences of 7
>>> a.reverse()
>>> print("The list a in reverse is ",a)
The list a in reverse is [7, 'c', 25.47, 'a', 1234.5, 333,

200, 66.25, 7, -55]
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10.2.8 Lists and functions
A function can be made to return multiple values using lists. This is done by
defining the function to return a list of values instead of a single value as in the
normal case. The following code illustrates this:

>>> def printTop3(list):
... list.sort()
... list.reverse()
... top3=[list[i] for i in range(3)]
... return(top3)
...
>>> mylist=[23,1,78,50,100,-5]
>>> printTop3(mylist)
[100, 78, 50]

10.2.9 Strings and lists
To construct a list out of the characters from a string, you can use list()
method as follows:

>>> str="two words"
>>> strlist=list(str)
>>> print(strlist)
['t', 'w', 'o', ' ', 'w', 'o', 'r', 'd', 's']

If you want to split a multi-word string into its constituent words and construct
a list out of those words, you should use the split() method:

>>> str="two words"
>>> strwords=str.split()
>>> print(strwords)
['two', 'words']

In the above example, the white space where you split the string is known
as the delimiter. If you want to specify a different delimiter, you can pass
that character (or even a string) as an argument to the split() method. The
following example illustrates this:

>>> str="two words"
>>> wsplit=str.split('w')
>>> print(wsplit)
['t', 'o ', 'ords']
>>> wosplit=str.split('wo')
>>> print(wosplit)
['t', ' ', 'rds']
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Notice that the delimiter doesn’t appear in the list.

The join() method works in the opposite sense of split(). It concatenates a
list of strings by inserting a “separator” between them. The following code uses
a blank space as the separator.

>>> sep=" "
>>> wordlist=["three", "word", "string"]
>>> str=sep.join(wordlist)
>>> print(str)
three word string

The following code uses a hyphen as a separator.

>>> sep="-"
>>> wordlist=["three", "word", "string"]
>>> str=sep.join(wordlist)
>>> print(str)
three-word-string

10.2.10 List of lists

All the elements in a list may be again lists. Such a list is called list of lists.
Here is one example:

lol=[[1], [15, 9], [108, 778]]

Since the constituent elements themselves are lists, to access the items in these
constituents, you need to use the subscript operator twice as illustrated below:

>>> lol=[[1], [15, 9], [108, 778]]
>>> celt=lol[1]
>>> elt=celt[1]
>>> print(elt)
9

You can even combine the above two steps:

>>> lol=[[1], [15, 9], [108, 778]]
>>> elt=lol[1][1]
>>> print(elt)
9
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A list of lists is often used to represent matrices. For example, the matrix:
1 2 3

4 5 6

7 8 9


might be represented as:

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

To print a row, you use the subscript operator:

>>> print(matrix[2])
[7, 8, 9]

To extract an individual element from the matrix, you should use the double-
index form:

>>> print(matrix[2][1])
8

10.2.11 List aliasing and cloning
If you assign a list variable to another, both variables refer to the same list.
Because the same list has two different names now, we say that the list is
aliased. Changes made with one list affect the other. See below:

>>> list = [1, 2, 3]
>>> alias=list
>>> print(alias)
[1, 2, 3]
>>> alias[1]=4
>>> print(list)
[1, 4, 3]

If you want to modify a list and also keep a copy of the original, you need to
use a technique called cloning. The easiest way to clone a list is to use the slice
operator. See the example below:

>>> list = [1, 2, 3]
>>> clone=list[:]
>>> print(clone)
[1, 2, 3]
>>> clone[1]=4
>>> print(list)
[1, 2, 3]
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>>> print(clone)
[1, 4, 3]
>>> list[1]=5
>>> print(clone)
[1, 4, 3]
>>> print(list)
[1, 5, 3]

Taking a slice of any list creates a new list. Thus you are free to make changes
to the new list without modifying the original or vice versa.

10.2.12 Equality of lists
A list and its alias refer to the same list. On the other hand, a list and its clone
refer to two different lists although both have the same elements. The equality
between a list and its alias is object identity and the equality between a list
and its clone is known as structural equivalence.
The is operator can be used to test for object identity. It returns True if the
two operands refer to the same list, and it returns False if the operands refer
to distinct lists (even if they are structurally equivalent). The following code
illustrates this: Consider the following code:

>>> mylist=[1,2,3]
>>> alias=mylist
>>> clone=mylist[:]
>>> print(alias is list)
True
>>> print(clone is list)
False

10.3 Tuples
A tuple is a sequence of values that resembles a list, except that a tuple is
immutable. You create a tuple by enclosing its elements in parentheses instead
of square brackets. (Strictly speaking, the enclosing parentheses are optional,
but are included to improve readability.) The elements are to be separated by
commas. Following are some examples:

t = ('a', 'b', 'c', 'd', 'e')
s = ('g', 2, 7, 8.978)

To create a tuple with a single element, we have to include a comma at the end,
even though there is only one value. Without the comma, Python treats the
element as a string in parentheses. The following code illustrates this:
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>>> t1=('a',)
>>> t2=('a')
>>> print(type(t1))
<class 'tuple'>
>>> print(type(t2))
<class 'str'>

10.3.1 Tuple creation
As discussed above, a tuple can be created by enclosing its elements in paren-
theses. Another way to create a tuple is to use the tuple() function. See
below:

>>> t1=tuple("string")
>>> print(t1)
('s', 't', 'r', 'i', 'n', 'g')
>>> t2=tuple([1,2,3])
>>> print(t2)
(1, 2, 3)
>>> t3=tuple()
>>> print(t3)
()
>>> t4=tuple([4])
>>> print(t4)
(4,)

In the above example, t3 is an empty tuple. Also, notice how t4 is printed with
commma at the end.

10.3.2 Tuple operations
Most of the operators and functions used with lists can be used similarly with
tuples. A few examples follow:

>>> lan=tuple("python")
>>> print(lan[0])
p
>>> print(lan[1:4])
('y', 't', 'h')

But, unlike lists, tuples are immutable – you are bound to get error when you
try to modify the tuple contents. See below:

>>> lan=tuple("python")
>>> lan[0]='P'
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Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

Python provides a quick way to swap two variables a and b without using
any third temporary variable:

>>> a,b=5,10
>>> print(a,b)
5 10
>>> a,b=b,a
>>> print(a,b)
10 5

This is known as tuple assignment.

10.4 The numpy package and arrays
NumPy stands for Numerical Python. It is an excellent package for advanced
computing in Python like linear algebra, Fourier transforms, and random sim-
ulation. This package also provides extensive support for arrays. An array is a
homogeneous collection of data items, unlike lists and tuples that are heteroge-
neous.

As always, if you want to use the components in NumPy, you should first
import the package. NumPy is usually imported with the np alias name:

import numpy as np

Now the NumPy package can be referred to as np instead of numpy.

10.4.1 Creating arrays
To create an array, you use the array() method of numpy package as shown
below:

>>> import numpy as np
>>> arr = np.array([1, 2, 3, 4, 5, 6])
>>> print(arr)
[1 2 3 4 5 6]

You can also create matrices (two-dimensional arrays) with array() method:

>>> mat = np.array([[1, 2, 3], [4, 5, 6]])
>>> print(mat)
[[1 2 3]
[4 5 6]]



162 CHAPTER 10. LISTS AND TUPLES

To know the dimensions of an array, you use the ndim attribute in NumPy. See
below:

>>> arr = np.array([1, 2, 3, 4, 5])
>>> print(arr.ndim)
1
>>> mat = np.array([[1, 2, 3], [4, 5, 6]])
>>> print(mat.ndim)
2

To know the size across each dimension, you use the shape attribute:

>>> arr = np.array([1, 2, 3, 4, 5])
>>> mat = np.array([[1, 2, 3], [4, 5, 6]])
>>> print(mat.shape)
(2, 3)
>>> print(arr.shape)
(6,)

The first output (2, 3) means that the array mat has 2 elements in the first
dimension (2 rows) and 3 elements in the second dimension (3 columns). The
second output (6,) means that the array arr has 6 elements in the first dimen-
sion and no elements in the second dimension).

10.4.2 Accessing array elements
Indexing and slicing work the same way with arrays as with other sequences like
lists, and tuples. Some examples follow:

>>> arr = np.array([1,2,3,4,5,6])
>>> mat = np.array([[1, 2, 3], [4, 5, 6]])
>>> print(arr[3])
4
>>> print(arr[2:5])
[3 4 5]
>>> print(mat[1])
[4 5 6]
>>> print(mat[0,2])
3
>>> print(mat[0][2])
3
>>> print(arr[-2])
5
>>> print(mat[-1,2])
6
>>> print(mat[-2,-3])
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1
>>> print(arr[-2:])
[5 6]
>>> print(arr[1:5:2])
[2 4]
>>> print(arr[:5:2])
[1 3 5]
>>> print(mat[:2:2])
[[1 2 3]]

for loop is used to traverse the array:

>>> arr = np.array([1,2,3,4,5,6])
>>> mat = np.array([[1, 2, 3], [4, 5, 6]])
>>> for elt in arr:
... print(elt,end=" ")
...
1 2 3 4 5 6
>>> for row in mat:
... print(row)
...
[1 2 3]
[4 5 6]
>>> for row in mat:
... for elt in row:
... print(elt,end=" ")
...
1 2 3 4 5 6
>>> for row in mat:
... for elt in row:
... print(elt,end=" ")
... print("")
...
1 2 3
4 5 6

10.4.3 Changing array dimensions
Changing the array dimensions means to increase or decrease the number of
dimensions. For this, you use the reshape() method. See some illustrations:

>>> arr = np.array([1,2,3,4,5,6])
>>> mat = np.array([[1, 2, 3], [4, 5, 6]])
>>> mat.reshape(1,6)
array([[1, 2, 3, 4, 5, 6]])
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>>> arr.reshape(3,2)
array([[1, 2],

[3, 4],
[5, 6]])

When you convert a one-dimensional array into a two-dimensional array, there
should be enough number of elements to fill all the rows. Otherwise, you will
end up with an error. See below:

>>> arr=np.array([1,2,3,4,5])
>>> arr.reshape(2,3)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot reshape array of size 5 into shape (2,3)

As the error itself mentions, you cannot convert a one-dimensional array with
5 elements to a two-dimensional array of 6 elements (2 rows and 3 columns).

10.4.4 Matrix operations

Table 10.2: Matrix operations with numpy

Operation Implementation

Add matrices x and y numpy.add(x,y)

Subtract matrices x and y numpy.subtract(x,y)

Multiply matrices x and y numpy.matmul(x,y)

Transpose matrix x x.T

NumPy has excellent support for doing most of the matrix operations. Some
of the matrix operations and their Python implementation are listed in Ta-
ble 10.2. See some illustrations now:

>>> mat1=np.array([[1,2],[3,4]])
>>> mat2=np.array([[5,6],[7,8]])
>>> print(np.add(mat1,mat2))
[[ 6 8]
[10 12]]
>>> print(np.subtract(mat1,mat2))
[[-4 -4]
[-4 -4]]
>>> print(np.matmul(mat1,mat2))
[[19 22]
[43 50]]
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>>> print(mat1.T)
[[1 3]
[2 4]]
>>> print(mat2.T)
[[5 7]
[6 8]]

10.5 Programming examples
Program 10.54. To find the median of a set of numbers.

Solution:

The median of a set of numbers is the value that is less than half the
numbers in the set and greater than the other half. If the number of values in
the list is odd, the median is the value at the middle when the set of numbers is
sorted; otherwise, you will have two middle values and the median is the average
of these two values.

For example, the median of the list [1, 3, 3, 5, 7] is 3, and the median of
the list [1, 8, 6, 4] is 7 ( 8+6

2 = 7).

numbers=[]
n=int(input("Enter the size of list"))
for i in range(n):

num=int(input("Enter a number"))
numbers.append(num)

numbers.sort()
mid=n//2
if n%2!=0:

median=numbers[mid]
else:

median=(numbers[mid]+numbers[mid-1])/2
print("The median is",median)

Program 10.55. To input a matrix and print its transpose.

import numpy as np
r=int(input("Enter the number of rows"))
c=int(input("Enter the number of columns"))
list=[]
print("Input the matrix")
for i in range(r*c):

elmt=int(input())
list.append(elmt)
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arr=np.array(list)
mat=arr.reshape(r, c)

print("The matrix A is")
for row in range(r):

for col in range(c):
print(mat[row][col],end=" ")

print("")

trans=mat.T
print("The transpose matrix is")
for row in range(c):

for col in range(r):
print(trans[row][col],end=" ")

print("")

10.6 Conclusion
Lists and tuples are very important data structures in Python and they both
serve different purposes. The list is mutable and lets you add, remove, or modify
elements in the list. Therefore lists are handy when it comes to collections that
need frequent addition/deletion/modifications. On the other hand, tuples are
immutable and provide a good way to store a fixed list of data elements.

In this chapter we went over several built-in functions for manipulating lists,
such as method calls to add and remove elements or sort them and query the
existence of an element. These will help developers to work with complex data
more efficiently. On the other hand, we can not modify tuples but this im-
mutability property of them could be a benefit when it comes to using some
data that should never change.

10.7 Exercises
1. Given a list L and an integer target, you have to find a pair of integers

whose sum is equal to a given integer, target
sample input: L = [1,2,3,4,5] ; target = 9
sample output: (4,5)

2. Given a list L, rotate the list k times in the clockwise direction
sample input: L = [1,2,3,4,5] ; k = 2
sample output: [4,5,1,2,3]
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Explanation: list after first rotation: [5,1,2,3,4]
list after second rotation: [4,5,1,2,3]

3. Write a Python program that inputs a list of numbers and then doubles
the odd numbers and halves the even numbers.

4. Given a list nums of numbers and an integer val, remove all occurrences
of val in the list.
sample input: nums = [1,2,2,3,4,5,6,6,2,2,2,8] ; val = 2
sample output: [1,3,4,5,6,6,8]

5. Given a list of strings, find out the longest word in that list. Display the
longest word, then replace the longest word with the word “found” and
print the list.

6. Write a Python program to input any two tuples and swap them.
Sample input: tuple1 = (1,2,3,4,5) ; tuple2 = (10,20,30,40,50)
Sample output: tuple1 = (10,20,30,40,50) ; tuple2 = (1,2,3,4,5)

7. Write a Python program to accept values from the user. Add it to a tuple
and display the elements one by one. Also, display the maximum and
minimum values of the tuple.

8. Write a program to print the Fibonacci sequence using lists.

9. Sarah is a data analyst working for a marketing agency. She has been given
a list of customer ages from a recent survey conducted by her company.
The list contains a mix of integers representing ages and some strings due
to data entry errors. Sarah needs to clean up this data by removing the
erroneous entries (non-integer values) and then analyze the data to find
the following:

(a) The youngest and oldest customers.
(b) The average age of the customers.
(c) The most common age in the list.

10. Write a menu-driven program to input two matrices and do the following:

(a) Find the sum of the two matrices
(b) Find the difference of the two matrices
(c) Find the product of the two matrices

11. Input a tuple tup from the user and an integer value k. You should replace
k present in the tuple with the square of that number.

Sample input: tup = (1,2,3,4,5) ; k = 4
Sample output: tup = (1,2,3,16,5)
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12. Imagine waking up on a deserted railway station, where trains keep ar-
riving and departing, yet no one is present to manage the hustle. As you
wander about the station, a note catches your eye: ”The person who reads
this becomes the master of the station.”

Manage this special railway station, ensuring trains operate smoothly and
efficiently. Determine whether each approaching train will halt or pass
through, assigning platforms to those that stop. If all platforms are occu-
pied, prioritize, departing the oldest train to accommodate the newcomer.
For trains passing through, an empty platform must be available; if not,
the oldest train must depart to clear the way.

Create a menu-driven program that allows you to input the number of
platforms (n). Simulate the arrival of trains, deciding whether they will
halt or pass through. Assign platforms to halting trains, ensuring efficient
management of the station. At the end of the simulation, display the total
number of trains that have stopped or passed through the station.
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Chapter 11

Sets and Dictionaries

“If two people always agree, one of them is redundant.”
- Anonymous

“I hold this to be the highest task for a bond between two people: that each
protects the solitude of the other.”

- Rainer Maria Rilke

“Every key tells a story, and every value is its plot—dictionaries bring data
to life.”

- Anonymous

11.1 Membership Manager
Think about running a membership website wherein you must find a user’s
details given the unique user ID or verify whether the user is a member. Using
dictionaries, the website can store detailed information about each member,
such as their name, email address, membership status, and any other relevant
data. This allows for quick retrieval of a user’s details simply by referencing
their unique ID, making operations like profile updates, access control, and
personalized content delivery seamless. Additionally, sets can be used to store
collections of these unique IDs, ensuring that no duplicates exist and enabling
quick checks to verify membership. This approach not only keeps the data
organized but also enhances the website’s efficiency in managing and accessing
member information.

11.2 Introduction
Dictionaries store data in key-value pairs, making it easy to retrieve or update
information using a unique identifier, like a user ID. They are highly efficient
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for tasks that require quick lookups or modifications.
Sets are collections of unique elements, ideal for managing groups of items where
duplicates are not allowed. They are handy for checking membership, perform-
ing set operations like unions and intersections, and ensuring that each element
is distinct.

11.3 Sets
A set is a collection of items just as tuples or lists but unlike the other two, a
set is unordered; the items in a set do not have a defined order.

11.3.1 Creating a set and accessing its elements
A set is created by enclosing the items in a pair of braces. Following are some
examples:

>>> directions={'east','west','south','north'}
>>> print(directions)
{'east', 'south', 'north', 'west'}

Notice that since the items are unordered in a set, each time you print the set,
the output may be different concerning the order of the elements.
You can also use the set method to create a set from a list or a tuple as follows:

>>> numbers=set([1,2,3,4])
>>> print(numbers)
{1, 2, 3, 4}
>>> vowels=set(('a','e','i','o,','u'))
>>> print(vowels)
{'o', 'u', 'a', 'e', 'i'}

The items in a set aren’t associated with index or position. This means it is
impossible to print an arbitrary element of the set.

>>> vowels=set(('a','e','i','o,','u'))
>>> vowels[2]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: 'set' object is not subscriptable

To traverse the set, use a for loop: The code

>>> for char in vowels:
... print(char,end=" ")
...
o u a e i
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Sets do not allow duplicate elements. The duplicates are automatically re-
moved even if you supply non-unique values. See below:

>>> fibonacci={0,1,1,2,3,5}
>>> print(fibonacci)
{0, 1, 2, 3, 5}

11.3.2 Adding and removing set elements
To add a single element to a set, you use the add() method:

>>> even={2,4,8,10}
>>> even.add(6)
>>> print(even)
{2, 4, 6, 8, 10}

To add multiple items to a set, the update() method is to be used:

>>> odd={1,3,7,9,13,15}
>>> odd.update({5,11})
>>> print(odd)
{1, 3, 5, 7, 9, 11, 13, 15}

To remove an item from a set, you should use the remove() method:

>>> primes={3,5,7,9,11}
>>> primes.remove(9)
>>> print(primes)
{3, 5, 7,11}

If the item to be removed is not present in the set, remove() will raise an error:

>>> primes={3,5,7,11}
>>> primes.remove(2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: 2

A second way to remove an item from a set is to use the discard() method
which works the same way as remove. The difference between these two methods
is that discard() will not raise an error if the item to be removed doesn’t exist
in the set unlike remove(). See an example:

>>> primes={3,5,7,9,11}
>>> primes.discard(9)
>>> print(primes)
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{3, 5, 7, 11}
>>> primes.discard(2)
>>> print(primes)
{3, 5, 7, 11}

To remove all the set items at once, you can use the clear() method as illus-
trated below:

>>> primes={3,5,7,9,11}
>>> primes.clear()
>>> print(primes)
set()

The keyword del can be used to delete the set itself, that is, after the del
operation, the set will not exist anymore. Any subsequent access to the set will
throw an error. See below:

>>> primes={3,5,7,9,11}
>>> del primes
>>> print(primes)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'primes' is not defined

11.3.3 Sets and relational operators
The relational operators can be used to check the relationship (subset, superset,
etc) between two sets. The meaning of the relational operators in the context
of sets is summarized in Table 11.1

Table 11.1: Relational operators with sets

Operator Interpretation

< ⊂

> ⊃

<= ⊆

>= ⊇

== checks if two sets are same

!= checks if two sets are not same

See some illustrations:
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>>> digits={0,1,2,3,4,5,6,7,8,9}
>>> natural={1,2,3,4,5,6,7,8,9,10}
>>> even={0,2,4,6,8}
>>> odd={1,3,5,7,9}
>>> prime={3,5,7}
>>> composite={4,6,8}
>>> print(even<natural)
False
>>> print(odd<digits)
True
>>> print(prime<=odd)
True
>>> print(digits>=even)
True
>>> print(composite==even)
False
>>> print(prime!=odd)
True

11.3.4 Mathematical set operations on Python sets
Python supports all the mathematical set operations (union, intersection, etc.).
These are summarized in Table 11.2. See some illustrative examples below:

>>> positive={1,2,3,4,5}
>>> negative={-5,-4,-3,-2,-1}
>>> numbers=positive.union(negative)
>>> print(numbers)
{1, 2, 3, 4, 5, -2, -5, -4, -3, -1}
>>> even={2,4,6,8,10}
>>> mul3={3,6,9,12}
>>> even={2,4,6,8,10,12}
>>> mul6=even.intersection(mul3)
>>> print(mul6)
{12, 6}
>>> mul15={0,15,30,45}
>>> mul5={0,5,10,15,20,25,30,25,40,45}
>>> mul5.intersection_update(mul15)
>>> print(mul5)
{0, 45, 30, 15}
>>> mul4={4,8,12,16,-4,-12,-20}
>>> mul8={8,16,-40,-120}
>>> mul4only=mul4.difference(mul8)
>>> print(mul4only)
{4, 12, -20, -12, -4}
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>>> mul4.difference_update(mul8)
>>> print(mul4)
{-4, 4, -12, -20, 12}
>>> numbers={-3,-2,-1,0,1,2,3}
>>> natural={1,2,3,4,5}
>>> integers=numbers.symmetric_difference(natural)
>>> print(integers)
{0, 4, 5, -1, -3, -2}
>>> numbers.symmetric_difference(natural)
>>> print(numbers)
{0, 4, 5, -1, -3, -2}

Table 11.2: Set operations on two sets A and B

Set method Meaning

A.union(B) returns a new set S = A ∪ B

A.intersection(B) returns a new set S = A ∩ B

A.intersection_update(B) changes the set A to A ∩ B

A.difference(B) returns a new set S = A – B

A.difference_update(B) changes the set A to A – B

A.symmetric_difference(B) returns a new set S = (A – B) ∪ (B – A)

A.symmetric_difference_update(B) changes the set A to (A – B) ∪ (B – A)

11.4 Dictionaries
A dictionary associates a set of keys with data values. For example, the words
in a standard English Dictionary comprise a set of keys, whereas their associated
meanings are the data values. Thus a dictionary is a mapping between a set of
keys and a set of values. Each key maps to a value. The association of a key
and a value is called a key-value pair, sometimes called an item or an entry.

A Python dictionary is written as a sequence of key/value pairs separated by
commas and the entire sequence is enclosed in a pair of braces. Each key is
separated from its value by a colon (:). Such a list of key-value pairs enclosed
in a pair of braces is known as a dictionary literal. Following is an example
dictionary:

>>> stud = {'Name': 'Ram', 'Age': 18, 'Class': 'S1'}
>>> print(stud)
{'Name': 'Ram', 'Age': 18, 'Class': 'S1'}
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Here Name, Age and Class are keys whereas Ram, 18 and S1 are the corresponding
values. An empty dictionary without any items is written as {}.

Keys are unique within a dictionary although values need not be. Although the
entries may appear to be ordered in a dictionary, this ordering is not the same,
each time we print the entries. In general, the order of items in a dictionary is
unpredictable.

11.4.1 Dictionary operations
We now move on to the discussion of some common operations on dictionaries.

11.4.1.1 Accessing values

The subscript operator is used to obtain the value associated with a key. See
below:

>>> stud = {'Name': 'Ram', 'Age': 18, 'Class': 'S1'}
>>> print("I am",stud['Name'],"aged",stud['Age'],"and I am

studying in",stud['Class'])
I am Ram aged 18 and I am studying in S1

However, if the key is not present in the dictionary, Python raises an error:

>>> stud = {'Name': 'Ram', 'Age': 18, 'Class': 'S1'}
>>> print(stud['College'])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: 'College'

11.4.1.2 Traversing a dictionary

A simple for loop can be used to traverse a dictionary as follows:

>>> stud = {'Name': 'Ram', 'Age': 18, 'Class': 'S1'}
>>> for key in stud:
... print(key,"-",stud[key])
...
Name - Ram
Age - 18
Class - S1

The key-value pairs need not be always printed in the order you gave.
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11.4.1.3 Inserting keys and updating key values

You should use the subscript operator to add a new key/value pair to the dic-
tionary. The following code illustrates this:

>>> stud['College']="Engineering college"
>>> print(stud)
{'Name': 'Ram', 'Age': 18, 'Class': 'S1', 'College':

'Engineering college'}

The subscript is also used to replace the value of an existing key:

stud = {'Name': 'Ram', 'Age': 18, 'Class': 'S1'}
>>> stud['Age']=19
>>> print(stud)
{'Name': 'Ram', 'Age': 19, 'Class': 'S1'}

11.4.1.4 Removing keys

To remove a key from a dictionary, use the del operator. The corresponding
key-value pair will be removed. This is illustrated below:

stud = {'Name': 'Ram', 'Age': 18, 'Class': 'S1'}
>>> del stud['Age']
>>> print(stud)
{'Name': 'Ram', 'Class': 'S1'}

11.4.1.5 Miscellaneous operations

The len() function returns the number of key-value pairs in a dictionary:

>>> stud = {'Name': 'Ram', 'Age': 18, 'Class': 'S1'}
>>> print(len(stud))
3

The in operator can be used to know if a key exists in the dictionary. See below:

>>> stud = {'Name': 'Ram', 'Age': 18, 'Class': 'S1'}
>>> print('Age' in stud)
True
>>> print('College' in stud)
False
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11.4.2 Dictionary methods
Python provides several methods to manipulate the dictionary elements. Ta-
ble 11.3 summarizes the commonly used dictionary methods, where dict refers
to a dictionary.

Table 11.3: Some dictionary methods, with dict denoting the dictionary

Dictionary method Purpose

dict.get(key,default)
Returns the value if the key exists or returns the default
if the key does not exist. Displays ”None” if the default is
omitted and the key does not exist.

dict.pop(key,default)
Removes the key and returns the value if the key exists or
returns the text default if the key does not exist. Raises
an error if the default is omitted and the key does not exist.

dict.keys() Returns a list of the keys.

dict.values() Returns a list of values.

dict.items() Returns a list of tuples containing the key and value pairs.

dict.clear() Removes all the items from the dictionary.

Some illustrations follow now:

>>> stud = {'Name': 'Ram', 'Age': 18, 'Class': 'S1'}
>>> print(stud.get('Name'))
Ram
>>> print(stud.get('College'))
None
>>> print(stud.get('College',"Oops!!No such key!"))
Oops!!No such key!
>>> stud.pop('College')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: 'College'
>>> stud.pop('Age')
18
>>> print(stud)
{'Name': 'Ram', 'Class': 'S1'}
>>> print(stud.keys())
dict_keys(['Name', 'Class'])
>>> print(stud.values())
dict_values(['Ram', 'S1'])
>>> print(stud.items())
dict_items([('Name', 'Ram'), ('Class', 'S1')])
>>> stud.clear()
>>> print(stud)
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{}

11.4.3 Dictionary aliasing and copying
Assigning a dictionary literal to another creates an alias of the original dictio-
nary. In this case, the changes made to one will affect the other. If you want
to modify a dictionary and keep a copy of the original, you need to use the
copy() method. With a copy, you can make changes to it without affecting the
original. The following illustrates this:

>>> directions={'N':'North','E':'East','S':'South','W':'West'}
>>> alias=directions
>>> copy=directions.copy()
>>> copy['S']='Sit down students!'
>>> print(copy)
{'N': 'North', 'E': 'East', 'S': 'Sit down students!', 'W':

'West'}
>>> print(directions)
{'N': 'North', 'E': 'East', 'S': 'South', 'W': 'West'}
>>> alias['S']='Sit down students!'
>>> print(directions)
{'N': 'North', 'E': 'East', 'S': 'Sit down students!', 'W':

'West'}
>>> print(alias)
{'N': 'North', 'E': 'East', 'S': 'Sit down students!', 'W':

'West'}

11.5 Programming examples
Program 11.56. To create a histogram for a string.

Solution:

Histogram for a string shows how many times each letter appears in the
string. A dictionary is very apt for representing a histogram. The keys represent
the letters in the string and values represent the corresponding counts.

histogram = {}
str=input("Enter a string")
for letter in str:

histogram[letter] = histogram.get(letter, 0) + 1
print(histogram)



180 CHAPTER 11. SETS AND DICTIONARIES

If the letter does not exist in the dictionary as a key, you just let the get()
method return 0 and insert the item into the dictionary. Otherwise, you in-
crease the count of that letter key in the dictionary.

Program 11.57. To create a dictionary out of the keys and values input from
the user.

dict={}
keys=[]
values=[]
n=int(input("How many entries you want?"))
print("Input the keys")
for i in range(n):

keys.append(int(input()))
print("Input the corresponding values")
for i in range(n):

values.append(int(input()))
dict={keys[i]:values[i] for i in range(n)}
print(dict)

See how comprehension is put to use here.

Program 11.58. To initialize a dictionary and then print its contents in the
ascending order of keys.

dict={'Name':'XYZ','Class':'S1','Age':18,'College':'Engineering
college'}

keys=list(dict.keys())
keys.sort()
for key in keys:

print(key,"-",dict[key])

11.6 Conclusion
In this chapter, we explored two fundamental data structures – sets and dic-
tionaries, learning how they streamline data management. We discovered how
sets can handle collections of unique items efficiently, while dictionaries allow
us to map keys to values for quick lookups. We also covered various functions
and methods for manipulating these structures, which empower us to work on
them more effectively and flexibly. By mastering these concepts and functions,
you now have the skills to handle complex data tasks easily, enhancing your
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programming and problem-solving skills.

11.7 Exercise
1. You are organizing a series of meetings and need to find which time slots

are free for two participants in the meeting. Given three sets: one with
all possible time slots and other two with time slots already booked by
the two individual participants, write a Python function to determine the
time slots that are still available. Also, determine the time slots during
which only one of the participants is available.
Example Input:

all_time_slots = {"9:00-10:00", "10:00-11:00", "11:00-12:00",
"12:00-1:00", "1:00-2:00", "2:00-3:00"}
booked_slots_1 = {"10:00-11:00", "1:00-2:00"}
booked_slots_2 = {"12:00-1:00", "2:00-3:00"}

Expected Output:

Available Slots: {'9:00-10:00', '11:00-12:00'}
Slots Where Only One Participant is Available: {'2:00-3:00',
'10:00-11:00','12:00-1:00', '1:00-2:00',}

2. Write a program to read N words and group the words by their length in
a dictionary. (The dictionary should have the length of the words as keys
and sets of words of that length as values.)
Example Input:

N = 6
Words = ["Hello", "World", "This", "Apple", "Banana", "Program"]

Expected Output:

{4: {"This"}, 5: {"Hello", "World", "Apple"}, 6: {"Banana"},
7: {"Program"}}

3. Design a menu-based program that uses a dictionary to track the stock of
products in a store. The program should allow the user to:

(a) Add a new product.
(b) Update the stock of an existing product.
(c) Check the stock of a given product.
(d) Display all products and their current stock levels.
(e) Exit the program.

Error cases to be handled:
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• The user tries to add a product that already exists.
• The user attempts to update or check stock for a product that does

not exist.

4. You are given data on user interactions on three social media posts:
“Post1”, “Post2”, and “Post3”. Each post has a list of users who in-
teracted with it in some manner (liked, commented, or shared). Write a
program to find the following:

(a) Common Interactors: Find the users who have interacted with all
three posts.

(b) Exclusive Interactors: Find users who interacted with only one post.
(c) Most Popular Post: Determine which post has the most unique user

interactions.
(d) Post Comparison: Compare two posts to see which users interacted

with both (Post1 and Post2).

Example Input:

post1 = {'Alice': 'like', 'Bob': 'comment', 'Charlie': 'share',
'David': 'like', 'Eve': 'like'}
post2 = {'Alice': 'comment', 'Charlie': 'like', 'David': 'comment',
'Frank': 'share'}
post3 = {'Bob': 'like', 'Charlie': 'comment', 'Eve': 'share',
'Grace': 'like'}

Expected Output:

Common Interactors: Charlie
Exclusive Interactors: Eve, Frank, Grace
Most Popular Post: post1
Common users for post1 and post2: Alice, David

5. Write a program to find anagrams from a set of n words. An anagram of
a word is another word consisting of the same letters but rearranged in
a different order. (e.g., stop and tops are both anagrams of pots.) The
input consists of n followed by the actual words. The output consists of
anagram sets with each set on different lines. The anagram sets should be
displayed in decreasing order of anagram word lengths. On each line, the
anagrams should be displayed in alphabetical order.
Example Input:

8
stop
tops
pots
opts
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dog
god
from
form

Expected Output:

form from
dog god
opts pots stop tops

6. Create a telephone directory using a dictionary. The name of the individ-
ual and the telephone number will be key and value, respectively. Write a
Python program that allows the user to perform the following operations:

(a) Add a Contact: Add a new contact with a name and phone number
to the directory.

(b) Update a Contact: Update the phone number of an existing contact.
(c) Delete a Contact: Remove a contact from the directory.
(d) Search for a Contact: Look up the phone number of a contact by

their name.
(e) Display All Contacts: Print all contacts in the directory.
(f) Exit the program.

Use a menu-driven approach.
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Chapter 12

Recursive Thinking

“There are two kinds of people in the world, those who divide the world into two
kinds of people and those who do not.”

– Anonymous

“To understand recursion, one must first understand recursion.”
– Stephen Hawking

Recursive thinking is a cornerstone of computer science and mathematical problem-
solving, characterized by breaking down a problem into smaller, more manage-
able subproblems that are similar to the original problem. This approach is
particularly effective for solving complex problems that can be defined as sim-
pler versions of themselves. Recursion is a natural and elegant method for
tackling issues in various domains, including algorithms, data structures, and
mathematical computations. This chapter explores the principles of recursive
thinking, its applications, and how it can be leveraged to develop elegant and
efficient solutions to complex problems.

12.1 What is Recursion?
Recursion involves a function calling itself to solve smaller or simpler instances
of the same problem. The recursive approach is built on the idea of solving
a problem by solving instances of the same problem. Imagine searching for a
name in a phone book by first opening it to the middle. If the name is on that
page, you have found it. If not, you decide where to search next: if the name
should be in the earlier part of the book, you focus on the first half; if it should
be in the later part, you focus on the second half. You continue this process,
repeatedly narrowing down your search to progressively smaller sections of the
phone book until you locate the name.

The concept of recursion can be beautifully illustrated using the metaphor
of Russian dolls, also known as Matryoshka dolls. Here’s how it works:

185
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A Russian doll set consists of multiple dolls that can be nested within one
another (see Figure12.1). Each doll, starting from the largest, can be opened to
reveal a smaller doll inside it, except for the smallest doll, which is indivisible.
To determine how many dolls are nested within the largest one, you must open
each doll and separate its pieces. This process continues until you reach the
smallest, indivisible doll. Once you have reached this smallest doll, you can
begin reassembling the dolls, counting each one as you fit it back into the next
larger doll until you finally nest all the dolls within the outermost one.

This nesting process is analogous to how a recursive function operates. Just
as each Russian doll contains a smaller one until reaching the smallest, a re-
cursive algorithm solves a problem by breaking it down into smaller instances
of the same problem. It continues solving these progressively smaller problems
until it reaches a point where the problem is simple enough to solve directly.
The algorithm then works backward, solving each larger sub-problem step by
step until it has solved the entire problem.

Figure 12.1: Russian nesting dolls

1

Russian Doll Metaphor for Recursion

1. Base Case (Smallest Doll):

• The smallest Russian doll represents the base case in recursion. It
is the simplest, indivisible case of the problem that does not need
further breaking down. In recursion, this is where the function ter-
minates.

2. Recursive Case (Nested Dolls):

• Larger Russian dolls contain smaller dolls inside them. This repre-
sents the recursive case. Each larger doll contains a smaller doll,
just as each recursive call contains a simpler subproblem that leads
toward the base case.

1Source: https://www.pngall.com/matryoshka-doll-png/download/42036
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3. Unwinding (Assembling the Dolls):

• Once the smallest doll (base case) is reached and processed, the dolls
are reassembled in the opposite order they were opened. This is
analogous to how the recursive function’s calls are completed and
results are combined as the recursion unwinds.

Each recursive call represents a larger doll containing a smaller one until the
smallest doll is reached. The results from the smallest to the largest are com-
bined as the recursion unwinds.

R Just as Russian dolls are nested within one another, recursive algo-
rithms solve a problem by solving smaller instances of the same problem.

This metaphor helps illustrate how recursion involves breaking down a problem
into smaller instances, solving them, and then combining the solutions.

12.1.1 Key Concepts
At its core, recursion involves a function calling itself with modified arguments.
A recursive function typically has two key components:

• Base Case: The simplest version of the problem that can be solved
directly without further recursion.

• Recursive Case: The part of the problem that involves calling the func-
tion itself to handle a smaller or simpler instance.

Once we determine the two essential components, implementing a recursive
function involves calling the function again based on the recursive relation until
the base case is reached.

To understand recursion, let us consider a classic example: calculating the
factorial of a number.

12.2 Example: Calculating Factorials
The factorial function is a classic example of recursion. The factorial of a non-
negative integer n, denoted n!, is defined as:

n! = n× (n− 1)× (n− 2)× · · · × 1

with the special case 0! = 1.

12.2.1 Recursive Definition
The factorial function can be defined recursively as follows:

• Base Case: 0! = 1

• Recursive Case: n! = n× (n− 1)! for n > 0
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12.2.2 Recursive Function Implementation
Here is a Python function that computes the factorial of a number using recur-
sion:

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n - 1)

12.2.3 Explanation of the Recursive Function
• Base Case: When n = 0, the function returns 1. This is the simplest

instance of the problem and terminates the recursion.
The base case is crucial for terminating the recursion. Without a base
case, the function would call itself indefinitely, leading to a stack overflow
error. A well-defined base case ensures that the recursion stops once the
simplest form of the problem is reached.

R Always define a base case that provides a straightforward so-
lution to the smallest instance of the problem. This ensures the
recursion terminates and prevents infinite loops.

• Recursive Case: For n > 0, the function computes n×factorial(n−1).
This involves calling ‘factorial‘ with n− 1, which continues until the base
case is reached.

R Break down the problem into smaller instances of itself. Each
recursive call should move towards the base case, simplifying the
problem incrementally.

12.2.4 How It Works
Suppose the user passes the value 4 to the factorial. What happens now is

factorial(4) executes 4 * factorial(3)
factorial(3) executes 3 * factorial(2)
factorial(2) executes 2 * factorial(1)
factorial(1) executes 1 * factorial(0)
factorial(0) returns 1 to its calling function factorial(1)
factorial(1) returns 1 * 1 = 1 to its calling function

factorial(2)
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factorial(2) returns 2 * 1 = 2 to its calling function
factorial(3)

factorial(3) returns 3 * 2 = 6 to its calling function
factorial(4)

factorial(4) returns 4 * 6 = 24

Visualizing the execution of a recursive function, such as the factorial func-
tion, can help understand how recursion works. To illustrate how the recursive
calls are made, we will visualize the recursion tree for 4!.

factorial(4)

4 ∗ factorial(3)

3 ∗ factorial(2) 4 ∗ 6

2 ∗ factorial(1) 3 ∗ 2

1 ∗ factorial(0) 2 ∗ 1

factorial(0) = 1 1 ∗ 1

returns 24

ret
urn

s 6

ret
urn

s 1

ret
urn

s 2

ret
urn

s 1

In the tree diagram:

• Each node represents a call to the factorial function.

• The children of each node represent the recursive calls made by that func-
tion.

• The return values are shown next to each node to illustrate the result of
the recursive call.

• The multiplication operations are indicated to show how each result is
computed.
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This visualization helps to understand how the function calls itself with a
decremented value until it reaches the base case, and then multiplies the results
as it returns from each recursive call.

12.3 The Call Stack
The call stack is a crucial data structure used in programming to manage func-
tion calls and control flow. It operates on a last-in, first-out (LIFO) principle,
meaning that the most recent function call is processed first when returning con-
trol to previous calls. Each time a function is invoked, a stack frame is created,
storing information such as the function’s parameters, local variables, and the
return address. As functions call other functions, new frames are pushed onto
the stack, and as functions return, their frames are popped off. This mechanism
ensures that each function executes in the correct context and allows for the
orderly execution and return of function calls, especially important in recursive
programming where functions call themselves. This section gives an overview
of what the call stack is, how it works, and its significance.

12.3.1 How the Call Stack Works
1. Function Call: When a function is called, an activation record (also

known as a stack frame) is created and pushed onto the top of the call
stack. This frame contains information such as:

• The return address (where to return control after the function exe-
cution completes)

• The parameters of the function
• Local variables of the function
• Saved registers

2. Function Execution: The CPU executes the function. If the function
calls another function, a new frame is pushed onto the stack.

3. Function Return: When a function finishes executing, its frame is
popped from the stack. Control is then transferred back to the return
address stored in the popped frame, and execution resumes from there.

12.3.2 Importance of the Call Stack
• Function Management: The call stack manages function calls and re-

turns in a structured manner, ensuring that each function’s local variables
and return address are properly maintained.

• Recursion: The call stack is crucial for handling recursive functions,
where a function calls itself. Each recursive call adds a new frame to the
stack.
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• Error Handling: The call stack helps in debugging and error handling.
A stack trace (a report of the active stack frames at a certain point in
time) is often used to diagnose the sequence of function calls leading to
an error or exception.

R Be mindful of how recursive calls use the call stack. Each function
call adds a new layer to the stack, which can lead to stack overflow if not
managed correctly.

Let us look at an example. Consider the following simple example of a recursive
function:

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n - 1)

#Calling the function
print(factorial(5))

Here is how the call stack would look during the execution of factorial(5):

• Initial Call: factorial(5)

– A frame for factorial(5) is pushed onto the stack.

• First Recursive Call: factorial(4)

– A frame for factorial(4) is pushed onto the stack.

• Second Recursive Call: factorial(3)

– A frame for factorial(3) is pushed onto the stack.

• Third Recursive Call: factorial(2)

– A frame for factorial(2) is pushed onto the stack.

• Fourth Recursive Call: factorial(1)

– A frame for factorial(1) is pushed onto the stack.

• Base Case: factorial(0)

– A frame for factorial(0) is pushed onto the stack. Since n == 0, it
returns 1 and this frame is popped.

As the base case returns, each function call completes and returns control to its
caller, popping frames off the stack in the reverse order of their addition.
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12.3.3 Call Stack Visualization
Visualizing the call stack for a recursive function like factorial(5) can help un-
derstand how each function call is managed. Here is a step-by-step illustration
of how the call stack evolves as factorial(5) executes:

Call Stack Visualization for factorial(5)

1. Initial Call: factorial(5)

• Stack Frame: factorial(5)
• Parameters: n = 5

• Local Variables: None yet
• Return Address: To the location where factorial(5) was called
• factorial(5) calls factorial(4)

2. Stack Frame: factorial(4)

• Parameters: n = 4

• Local Variables: None yet
• Return Address: To the location after the call to factorial(4) in

factorial(5)
• factorial(4) calls factorial(3)

3. Stack Frame: factorial(3)

• Parameters: n = 3

• Local Variables: None yet
• Return Address: To the location after the call to factorial(3) in

factorial(4)
• factorial(3) calls factorial(2)

4. Stack Frame: factorial(2)

• Parameters: n = 2

• Local Variables: None yet
• Return Address: To the location after the call to factorial(2) in

factorial(3)
• factorial(2) calls factorial(1)

5. Stack Frame: factorial(1)

• Parameters: n = 1

• Local Variables: None yet
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• Return Address: To the location after the call to factorial(1) in
factorial(2)

• factorial(1) calls factorial(0)

6. Stack Frame: factorial(0) (Base Case)

• Parameters: n = 0

• Local Variables: None yet
• Return Address: To the location after the call to factorial(0) in

factorial(1)
• factorial(0) returns 1

7. Returning from factorial(0)

• factorial(1) receives the result 1
• factorial(1) calculates: 1 ∗ 1 = 1

• factorial(1) returns 1

8. Returning from factorial(1)

• factorial(2) receives the result 1
• factorial(2) calculates: 2 ∗ 1 = 2

• factorial(2) returns 2

9. Returning from factorial(2)

• factorial(3) receives the result 2
• factorial(3) calculates: 3 ∗ 2 = 6

• factorial(3) returns 6

10. Returning from factorial(3)

• factorial(4) receives the result 6
• factorial(4) calculates: 4 ∗ 6 = 24

• factorial(4) returns 24

11. Returning from factorial(4)

• factorial(5) receives the result 24
• factorial(5) calculates: 5 ∗ 24 = 120

• factorial(5) returns 120

Final Result: factorial(5) returns 120.
This process can be pictorially depicted as follows.
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factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0)

Call factorial(4)

Call factorial(3)

Call factorial(2)

Call factorial(1)

Call factorial(0)

Return 1

Return 1 * 1 = 1

Return 2 * 1 = 2

Return 3 * 2 = 6

Return 4 * 6 = 24

Return 5 * 24 = 120

Call Stack

Base Case

Explanation
• factorial(5) calls factorial(4) and waits for the result.

• factorial(4) calls factorial(3) and waits for the result.

• factorial(3) calls factorial(2) and waits for the result.

• factorial(2) calls factorial(1) and waits for the result.

• factorial(1) calls factorial(0) and waits for the result.
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• factorial(0) returns 1 (base case).

• factorial(1) receives the result 1 and returns 1 * 1 = 1.

• factorial(2) receives the result 1 and returns 2 * 1 = 2.

• factorial(3) receives the result 2 and returns 3 * 2 = 6.

• factorial(4) receives the result 6 and returns 4 * 6 = 24.

• factorial(5) receives the result 24 and returns 5 * 24 = 120.

In this visualization, each function call adds a new frame to the stack, and each
return removes a frame, reflecting the LIFO nature of the call stack.

12.3.4 Implications of Recursion and the Call Stack
• Memory Usage: Each recursive call adds a new frame to the stack. Deep

recursion can lead to high memory usage and even stack overflow if the
recursion depth is too large.

• Stack Overflow: This occurs when the call stack exceeds its limit due
to too many recursive calls. It’s often a sign of either too deep recursion
or an infinite recursion due to missing base cases.

• Efficiency: Recursion can be elegant and easy to understand but might be
less efficient than iterative solutions in terms of both time and space. Tail
recursion optimization can help mitigate some inefficiencies in languages
that support it.

• Debugging: Debugging recursive functions involves tracking the state of
each frame on the call stack, which can be complex. Stack traces are often
used to trace the function calls leading up to an error.

Understanding the call stack is essential for debugging, optimizing, and writ-
ing efficient and error-free code, especially in languages that support recursion
and have complex function call structures.

12.4 Why Use Recursion?

R If you organize your thoughts recursively, your algorithm becomes a
three-line program, and all the details are behind the scenes in the recursive
stack that your program does for you.

Recursion is a powerful and often elegant approach to problem-solving. It of-
fers several advantages over iterative methods, particularly for certain types of
problems. This section explores why recursion can be beneficial, illustrated with
examples.
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12.4.1 Simplification
Recursion can simplify the solution to complex problems by breaking them
down into smaller, more manageable subproblems. This reduction can make
the problem easier to understand and solve.

Example: Finding the Greatest Common Divisor (GCD)
Using Euclidean Algorithm
The Euclidean algorithm is a classic example of how recursion can simplify a
problem. It provides an elegant and concise method for finding the greatest
common divisor (GCD) of two integers.

Problem Definition
The GCD of two integers a and b is the largest integer that divides both a and
b without leaving a remainder. The Euclidean algorithm relies on the principle
that:

gcd(a, b) = gcd(b, a mod b)

where ‘mod’ denotes the modulo operation. The algorithm continues until one
of the numbers becomes zero, at which point the other number is the GCD.

This recursive property is the foundation of the algorithm, reducing the
problem size in each step.

Recursive Approach
The recursive solution directly reflects the Euclidean algorithm’s steps, making
the implementation both elegant and easy to understand:

def gcd(a, b):
if b == 0:

return a
else:

return gcd(b, a % b)

# Example usage
a = 48
b = 18
print(f"The GCD of {a} and {b} is {gcd(a, b)}")

Explanation
1. Base Case: When b = 0, the GCD is a. This is because any number is

divisible by itself, and the remainder is zero.
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2. Recursive Case: Compute gcd(b, a mod b). The modulo operation re-
duces the size of the problem, and the recursion continues with the new
values.

Why this approach is elegant and concise?
• Direct Mapping: The recursive solution closely follows the mathemat-

ical definition of the Euclidean algorithm, making it straightforward and
intuitive.

• Compact Code: The recursive implementation is concise and easy to
read, requiring only a few lines of code to solve the problem.

• Simplified Logic and Readability: The recursive approach simplifies
the problem-solving process by reducing the problem size in each step and
directly applying the algorithm’s principle.

Iterative Approach for Comparison
The iterative approach to finding the GCD involves using a loop to simulate the
recursive steps:

def gcd_iterative(a, b):
while b != 0:

a, b = b, a % b
return a

# Example usage
a = 48
b = 18
print(f"The GCD of {a} and {b} is {gcd_iterative(a, b)}")

While the iterative approach is also efficient, it involves additional logic for
managing the loop and updating variables. The recursive approach provides a
cleaner and more direct implementation of the Euclidean algorithm.

The recursive approach to finding the GCD using the Euclidean algorithm
highlights the power of recursion in simplifying complex problems. By directly
implementing the algorithm’s principle, the recursive solution is both elegant
and concise, showcasing how recursion can streamline problem-solving and re-
duce code complexity.

12.4.2 Natural Fit for Certain Problems
Recursion is particularly well-suited for problems with a recursive structure,
where the solution involves solving smaller instances of the same problem.
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Example: Fibonacci Sequence
The sequence 0, 1, 1, 2, 3, 5, 8, 13, 21 · · · known as the Fibonacci sequence is a
classic example of a problem where recursion is a natural fit. The problem’s
recursive nature simplifies the implementation and makes it easy to understand.
The Fibonacci sequence is defined as follows:

F (0) = 0

F (1) = 1

F (n) = F (n− 1) + F (n− 2) for n ≥ 2

In this sequence, each number is the sum of the two preceding ones. The re-
cursive definition of the Fibonacci sequence lends itself naturally to a recursive
implementation.

Recursive Approach
The recursive solution directly follows the mathematical definition of the Fi-
bonacci sequence, making it both intuitive and easy to understand.

Recursive Solution:

def fibonacci_recursive(n):
if n <= 1:

return n
else:

return fibonacci_recursive(n - 1) +
fibonacci_recursive(n - 2)

# Example usage
n = 5
print(f"Fibonacci number at position {n} is

{fibonacci_recursive(n)}") #outputs 5

Explanation:
• Base Cases: If n is 0 or 1, return n. These are the initial conditions of

the Fibonacci sequence.

• Recursive Case: Compute F (n) as F (n − 1) + F (n − 2). The function
calls itself to calculate the two preceding Fibonacci numbers, breaking the
problem into smaller subproblems.
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Iterative Approach for Comparison
While recursion provides an elegant solution, the iterative approach can be more
efficient, especially for larger values of n :

def fibonacci_iterative(n):
if n <= 1:

return n
a, b = 0, 1
for _ in range(2, n + 1):

a, b = b, a + b
return b

# Example usage
n = 7
print(f"Fibonacci number at position {n} is

{fibonacci_iterative(n)}") #outputs 13

The iterative approach uses a loop to compute the Fibonacci numbers. It
keeps track of the last two numbers and updates them iteratively. The iterative
approach is more efficient in terms of time and space complexity compared to
the recursive approach, especially for large n, as it avoids redundant calculations
and stack overhead.

The recursive solution to the Fibonacci sequence problem demonstrates how
recursion is a natural fit for problems with recursive definitions. The recursive
approach provides a clear and elegant implementation that mirrors the prob-
lem’s mathematical structure. While iterative solutions can be more efficient,
recursion remains a valuable technique for its simplicity and alignment with the
problem’s inherent structure.

In summary, recursion is a valuable concept to learn and understand. It is
good programming practice when used appropriately and can provide elegant
solutions to problems. However, it’s also important to know when iterative
solutions might be more efficient or simpler to implement.

12.5 Steps for Solving Computational
Problems using Recursion

As already said, the recursive problem-solving technique involves solving a prob-
lem by breaking it down into smaller, more manageable subproblems of the same
type. This method relies on a function calling itself to handle these subproblems,
which can lead to elegant and efficient solutions. To effectively use recursion for
computational problem-solving, one must follow a structured approach. This
includes understanding the problem thoroughly, identifying the base case to
prevent infinite recursion, defining the recursive case to break the problem into
simpler instances, implementing the recursive function by combining the base
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and recursive cases, and rigorously testing the function to ensure its correctness
across various inputs. By adhering to these steps, one can leverage recursion to
tackle a wide range of computational challenges, from simple arithmetic opera-
tions to complex data structure manipulations.

R The recursive approach is like peeling an onion; you peel off layers
until you reach the core, then you rebuild the layers to reach the final
result.

To illustrate these steps, let us apply recursion to compute the sum of elements
in a list.

1. Understand the Problem

Problem: Given a list of numbers, calculate the sum of all its elements.

Example Input: [1, 2, 3, 4, 5]

Example Output: 15
To solve this, we need to add up all the elements in the list. Recursion will
help us simplify this task by handling one element at a time and summing
it with the result of the sum of the remaining elements.

2. Identify the Base Case

Base Case: The simplest instance of the problem that can be solved
directly without recursion.
For summing elements in a list, the base case is when the list is empty,
and so the sum is 0.

Base Case Condition: sum([]) = 0

3. Define the Recursive Case

Recursive Case: Break down the problem into smaller subproblems and
express the solution in terms of these subproblems.
For a non-empty list, the sum can be calculated by adding the first element
of the list to the sum of the remaining elements. This reduces the problem
size by removing the first element and applying the same sum operation
to the rest of the list.
Recursive Case Formula: sum(lst) = lst[0]+ sum(lst[1:])

4. Implement the Recursive Function

Combine the base case and recursive case into a single function.
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Implementation in Python:

def sum_list(lst):
# Base case: if the list is empty, return 0
if len(lst) == 0:

return 0

# Recursive case: add the first element to the sum of
# the rest of the list

else:
return lst[0] + sum_list(lst[1:])

Explanation:

• If the list is empty (len(lst) == 0), return 0 (base case).
• Otherwise, return the first element (lst[0]) plus the result of calling

sum_list on the rest of the list (lst[1 :]).

5. Test the Recursive Function

Testing ensures that the function handles different scenarios correctly.
Test Cases:

#Test case 1: Empty list
print(sum_list([])) # Expected output: 0

# Test case 2: List with one element
print(sum_list([5])) # Expected output: 5

# Test case 3: List with multiple elements
print(sum_list([1, 2, 3, 4, 5])) # Expected output: 15

# Test case 4: List with negative and positive elements
print(sum_list([-1, 2, -3, 4])) # Expected output: 2

Explanation of Tests:

• The function should correctly return 0 for an empty list.
• It should return the element itself if the list has only one element.
• For a typical list with multiple elements, it should compute the sum

of all elements.
• For a list with negative and positive numbers, the function should

still correctly compute the sum.

The example of summing elements in a list demonstrates how recursion can
simplify the problem-solving process and lead to clean, concise code.
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12.6 Example Problems

To effectively illustrate the utility of recursion, we consider a range of example
problems that showcase its versatility. These include finding the maximum
value within a list and reversing a string. Each of these problems exemplifies
how recursion can simplify and streamline solutions by leveraging base and
recursive cases. By understanding and implementing these examples, one can
grasp the fundamental principles of recursion and apply them to a wide array
of computational challenges.

12.6.1 Finding the Maximum Element in a List
The objective is to find the maximum element in a list of numbers.

Example Input: [1, 3, 5, 2, 4]

Example Output: 5

Solution Steps

1. Understand the Problem: Identify the largest number in the list.

2. Identify the Base Case: If the list has only one element, that element
is the maximum.

3. Define the Recursive Case: The maximum of a list is the greater of
the first element and the maximum of the rest of the list.

4. Implement the Recursive Function:

def max_list(lst):
if len(lst) == 1: # Base case: single element

return lst[0]
else:

max_of_rest = max_list(lst[1:])
return lst[0] if lst[0] > max_of_rest else

max_of_rest

5. Test the Recursive Function:

print(max_list([1])) # Expected output: 1
print(max_list([1, 3, 5, 2, 4])) # Expected output: 5
print(max_list([-1, -2, -3])) # Expected output: -1
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12.6.2 Reversing a String
The objective is to reverse a given string.

Example Input: ”hello”

Example Output: ”olleh”

Solution Steps
1. Understand the Problem: Reverse the order of characters in the string.

2. Identify the Base Case: An empty string or a single character string
is its own reverse.

3. Define the Recursive Case: The reverse of a string is the reverse of
the substring excluding the first character, plus the first character.

4. Implement the Recursive Function:

def reverse_string(s):
""" Base case: empty string or single character """
if len(s) <= 1:

return s
else:

return reverse_string(s[1:]) + s[0]

print(reverse_string("")) # Expected output: ""
print(reverse_string("a")) # Expected output: "a"
print(reverse_string("hello")) # Expected output: "olleh"

5. Test the Recursive Function:

print(reverse_string("")) # Expected output: ""
print(reverse_string("a")) # Expected output: "a"
print(reverse_string("hello")) # Expected output: "olleh"

We will go through some additional examples with minimal detailed explanation.

12.6.3 Counting the Occurrences of a Value in a List
Count how many times a specific value appears in a list.

Example Input: [1, 2, 3, 2, 4, 2], value = 2

Example Output: 3

Solution Idea:
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1. If the list is empty, return 0.

2. Compare the first element with the target value.

3. Add 1 to the result if they are equal; otherwise, add 0.

4. Recursively count the occurrences in the rest of the list.

Recursive Solution:

• Base Case: If the list is empty, the count is 0.

• Recursive Case: The count of value in the list is 1 if the first element
matches value, otherwise, it is 0 plus the count in the rest of the list.

Python Code:

def count_occurrences(lst, value):
if not lst: # Base case: empty list

return 0
count = 1 if lst[0] == value else 0
return count + count_occurrences(lst[1:], value)

12.6.4 Flattening a Nested List
Flatten a nested list (a list that may contain other lists) into a single list of
values.

Example Input: [1, [2, [3, 4], 5], 6]

Example Output: [1, 2, 3, 4, 5, 6]

Solution Idea:

1. Initialize an empty list to store the result.

2. Iterate over each element in the nested list.

3. If the element is a list, recursively flatten it and extend the result list.

4. If the element is not a list, append it directly to the result list.

Recursive Solution:

• Base Case: If the element is not a list, return it as a single-element list.

• Recursive Case: If the element is a list, recursively flatten each item in
the list and concatenate the results.

– Process each element in the list.
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– If an element is a list, recursively flatten it.
– Otherwise, add the element to the result.

Python Code:

def flatten(nested_list):
flat_list = []
for element in nested_list:

if isinstance(element, list):
flat_list.extend(flatten(element))

else:
flat_list.append(element)

return flat_list

12.6.5 Calculating the Power of a Number
Compute the power of a number xn, where x is the base and n is the exponent.

Example Input: x = 2, n = 4

Example Output: 16

Solution Idea:
1. If n is 0, return 1.

2. Multiply the base x by the result of power(x, n− 1).

3. If n is negative, handle it by computing the reciprocal of the positive
power.

Recursive Solution:
• Base Case: If the exponent n is 0, the result is 1 (since any number

raised to the power of 0 is 1).

• Recursive Case: To compute xn, multiply x by x(n−1)

– If n > 0, return x× power(x, n− 1).
– For n < 0, use the reciprocal of the base for the negative exponent.

Python Code:

def power(x, n):
if n == 0: # Base case: x^0 = 1

return 1
else:

return x * power(x, n - 1)
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12.6.6 Generating All Subsets of a Set
Generate all possible subsets of a given set.

Example Input: [1, 2, 3]

Example Output: [[], [1], [2], [1, 2], [3], [1, 3], [2, 3], [1, 2, 3]]

Solution Idea:

1. If the set is empty, return a list containing only the empty subset.

2. Recursively generate subsets of the remaining elements.

3. Combine the subsets with and without the first element.

Recursive Solution:

• Base Case: The subsets of an empty set are just the empty set itself.

• Recursive Case: To generate subsets of a set with elements, generate
subsets including and excluding the first element.

– Compute subsets of the remaining elements.
– Include each subset of the remaining elements with and without the

first element.

Python Code:

def generate_subsets(s):
if len(s) == 0: # Base case: empty set

return [[]]
first = s[0]
rest_subsets = generate_subsets(s[1:])
return rest_subsets + [subset + [first] for subset in
rest_subsets]

print(generate_subsets([1,2,3]))

# Error in INPUT CASE

12.6.7 Solving a Maze (Backtracking)
Find a path from the start to the end of a maze represented as a 2D grid, where
0 indicates a free cell and 1 indicates a wall.

Example Input:
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[
[0, 0, 1, 0],
[0, 0, 1, 0],
[0, 0, 0, 0],
[0, 1, 0, 0]
]

Example Output: Path from start (0, 0) to end (3, 3).

Solution Idea:

1. Check if the current cell is out of bounds or blocked, or if it has been
visited.

2. If the current cell is the destination, return True.

3. Mark the current cell as visited.

4. Recursively attempt to move to adjacent cells.

5. If moving to an adjacent cell leads to a solution, return True.

6. If none of the moves lead to a solution, backtrack by unmarking the current
cell.

Recursive Solution:

• Base Case: If the current position is the end, return True.

• Recursive Case: Move to adjacent cells (up, down, left, right), and
recursively check if moving to these cells leads to a solution.

– If moving to an adjacent cell is valid (i.e., within bounds and not a
wall), mark it as part of the path.

– Recursively try to solve the maze from the new position.
– If a solution is found, return True; otherwise, backtrack.

Python Code:

def solve_maze(maze, x, y, path):
if x < 0 or x >= len(maze) or y < 0 or y >= len(maze[0]) or
maze[x][y] == 1 or (x, y) in path:

return False

# Base case: reached the end of the maze
if (x, y) == (len(maze) - 1, len(maze[0]) - 1):

path.append((x, y))
return True
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path.append((x, y))

if (solve_maze(maze, x + 1, y, path) or
solve_maze(maze, x - 1, y, path) or
solve_maze(maze, x, y + 1, path) or
solve_maze(maze, x, y - 1, path)):
return True

path.pop()
return False

# Example usage:
maze = [[0, 0, 0, 0],

[1, 1, 0, 1],
[0, 0, 0, 0],
[0, 1, 1, 0]]

path = []
if solve_maze(maze, 0, 0, path):

print("Path found:", path)
else:

print("No path found")

# Output is given below:
# Path found: [(0, 0), (0, 1), (0, 2), (1, 2), (2, 2), (2, 3),

(3, 3)]

12.7 Avoiding Circularity in Recursion
Avoiding circularity in recursion is crucial to ensure that your recursive functions
terminate correctly and do not fall into infinite loops. Circularity in recursion
can occur if a function keeps calling itself without a proper termination condi-
tion or if the termination conditions are not properly defined. Here are some
strategies to avoid circularity in recursion:

1. Define a Clear Base Case
The base case is a condition that stops further recursive calls. Every
recursive function must have a base case to prevent infinite recursion.
Python Example: Sum of Natural Numbers

def sum_natural_numbers(n):
""" Base case: if n is 0 or negative, return 0 """
if n <= 0:

return 0
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else: # Recursive call
return n + sum_natural_numbers(n - 1)

# Test
print(sum_natural_numbers(5)) # Output: 15
# (5 + 4 + 3 + 2 + 1 = 15)

2. Ensure Progress Towards the Base Case
Each recursive call should make progress toward the base case. This means
modifying parameters so that the function eventually reaches the base
case.
Python Example: Counting Down

def countdown(seconds):
""" Base case: If seconds is less than or equal to 0,
print 'Time's up!' and end recursion. """
if seconds <= 0:

print("Time's up!")
else:

print(seconds)
# Ensure progress by decrementing the number of

seconds.
# Recursive call with the updated number of seconds.
countdown(seconds - 1)

# Test
countdown(5) # Counts down from 5 to 0

3. Avoid Unchanging Parameters
The parameters passed in each recursive call should be updated to ensure
that they eventually lead to the base case. Avoid passing parameters that
would lead to redundant or unchanged recursion.
Python Example: Computing Exponentiation

def power(base, exponent):
""" Base case: any number to the power 0 is 1 """
if exponent == 0:

return 1
else:

# Recursive call with decremented exponent
return base * power(base, exponent - 1)

# Test
print(power(2, 3)) # Output: 8 (2^3)
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4. Handle Edge Cases Appropriately

Ensure that edge cases are handled properly so the function behaves cor-
rectly for all possible inputs, including special or boundary instances.

Python Example: Printing Elements in a List

def print_list(lst, index=0):
""" Base case: index out of range of the list """
if index >= len(lst):

return
print(lst[index])
# Recursive call with incremented index
print_list(lst, index + 1)

# Test
print_list([10, 20, 30]) # Output: 10 20 30

5. Use Debugging Tools

If you suspect your recursive function might have issues with termination,
use debugging techniques to trace function calls and verify that recursion
progresses toward the base case.

Python Example: Fibonacci Sequence with Debugging

def fibonacci(n):
print(f"Calling fibonacci({n})") # Debugging statement
if n <= 1: # Base case: fibonacci of 0 or 1

return n
else: # Recursive calls

return fibonacci(n - 1) + fibonacci(n - 2)

# Test
print(fibonacci(4))
# Output:
""" Calling fibonacci(4)
Calling fibonacci(3)
Calling fibonacci(2)
Calling fibonacci(1)
Calling fibonacci(0)
Calling fibonacci(1)
Calling fibonacci(2)
Calling fibonacci(1)
Calling fibonacci(0)
3 """
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Following these strategies and examples, you can create recursive functions that
are effective and safe from circularity issues.

12.8 Iteration vs. Recursion
In programming, two fundamental techniques for solving problems are iteration
and recursion. Each approach has its own strengths and weaknesses, and un-
derstanding these differences can help you choose the most appropriate method
for a given problem.

12.8.1 Iteration
Iteration involves using looping constructs such as for, while, or do-while
loops to repeatedly execute a block of code until a specific condition is met.

Key Characteristics
• Control Flow: Iteration explicitly manages the flow of execution through

loop constructs. The loop continues as long as the loop condition evaluates
to true.

• State Management: State is maintained using loop variables and accu-
mulators that are updated during each iteration.

• Memory Usage: Iteration typically requires a fixed amount of additional
memory for loop variables, making it more memory-efficient compared to
recursion.

• Performance: Generally faster due to reduced overhead associated with
function calls and stack management.

• Termination: The loop terminates when the loop condition becomes
false.

Example
To compute the sum of the first n natural numbers using iteration:

def sum_iterative(n):
total = 0
for i in range(1, n + 1):

total += i
return total
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Advantages
• Efficiency: More efficient in terms of both time and space for simple

repetitive tasks.

• Simplicity: Easier to understand and implement for straightforward
problems.

12.8.2 Recursion
Recursion involves a function calling itself to solve smaller instances of the same
problem. The function continues to call itself with modified arguments until a
base case is reached.

Key Characteristics
• Control Flow: Recursion implicitly manages execution flow through re-

cursive function calls. Each call reduces the problem size, and the base
case provides a stopping point.

• State Management: Each recursive call creates a new stack frame, lead-
ing to potentially higher memory usage.

• Memory Usage: Can be less efficient due to the overhead of managing
multiple stack frames.

• Performance: May be slower due to the overhead associated with func-
tion calls and stack management.

• Termination: Recursion terminates when the base case is reached, and
the function begins returning and resolving each recursive call.

Example
To compute the factorial of a number using recursion:

def factorial_recursive(n):
if n == 0:

return 1
else:

return n * factorial_recursive(n - 1)

Advantages
• Elegance: Provides a more natural and concise solution for problems

with a recursive structure.

• Readability: Simplifies complex problems, such as those involving hier-
archical or divide-and-conquer structures.
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12.8.3 Comparing Iteration and Recursion
Memory Efficiency

• Iteration: Generally uses a constant amount of memory for loop vari-
ables.

• Recursion: May be less efficient due to the overhead of maintaining
multiple stack frames.

Control Flow
• Iteration: Explicitly controlled with loop constructs and conditions.

• Recursion: Controlled through recursive function calls and base cases.

Performance
• Iteration: Typically more performance due to reduced overhead.

• Recursion: May be slower due to the cost of managing the call stack.

Use Cases
• Iteration: Best suited for problems involving straightforward repetitive

operations.

• Recursion: Ideal for problems with a hierarchical structure or that can
be divided into similar sub-problems.

R Recognize that recursion can sometimes be less efficient due to the
overhead of function calls and memory usage. Evaluate whether iteration
might be a more efficient alternative for some problems.

The choice between iteration and recursion depends on the nature of the prob-
lem, performance considerations, and readability. Iteration is generally pre-
ferred for simple, repetitive tasks due to its efficiency, while recursion is useful
for problems with a recursive structure or hierarchical nature.

12.9 Conclusion
Recursive thinking is a fundamental technique in problem-solving, offering a
clear and elegant way to tackle complex problems by breaking them down into
simpler subproblems. While recursion may introduce challenges related to per-
formance and memory usage, understanding its principles and applications is
essential for mastering various computational problems. Through practice and
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visualization, recursive thinking becomes an invaluable tool in a problem solver’s
arsenal, providing a powerful approach to designing and implementing efficient
algorithms. This chapter has introduced the basics of recursion, illustrated
through many examples, and highlighted the benefits and challenges of recur-
sive thinking. In the following chapters, we will explore more complex examples
and applications of recursion in different problem domains.

Exploring recursive thinking can deepen your understanding of problem-
solving and algorithm design. Here are some highly recommended books that
provide a solid foundation in recursive thinking and related concepts. [1] Of-
ten referred to as CLRS, this book is a comprehensive resource on algorithms,
including recursion. It covers various algorithmic techniques and provides de-
tailed explanations and examples. This book focuses on recursive algorithms,
dynamic programming, and divide-and-conquer techniques. [2] Knuth’s classic
work covers a wide range of algorithms and includes deep dives into recursive
algorithms and their analysis. This book focuses on recursion, mathematical
foundations, and algorithm analysis. [3] This book offers a modern introduc-
tion to algorithms, with a focus on both practical applications and theoretical
foundations. It includes discussions on recursion and provides numerous exam-
ples. [4] Bentley’s book provides practical advice on programming and problem-
solving, including recursive techniques. It’s known for its insightful and clear
explanations. [5] This book offers a collection of programming problems and so-
lutions, including those involving recursion. It is designed to help with coding
interviews and practical problem-solving. [6] A focused resource on recursion
and backtracking techniques. It provides explanations and examples to help
understand and apply recursive thinking. [7] This book provides an in-depth
look at data structures and algorithms, with a focus on recursive algorithms
in C++. It includes practical examples and analysis. [8] This book focuses on
implementing algorithms in Python, including recursive algorithms. It provides
practical examples and exercises.

12.10 Exercises
1. Determine if a string is a palindrome by checking if the first and last

characters match and recursively checking the substring between them.

2. Find the length of a string by counting one character at a time and recur-
sively reducing the problem to the rest of the string.

3. Compute the sum of the digits of a number by recursively summing the
last digit and the sum of the digits of the remaining number.

4. Reverse a string by considering the first character and recursively reversing
the rest of the string.

5. Generate all combinations of k items from a set of n items by including
or excluding each item recursively.
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6. Check if a list is sorted in ascending order by comparing adjacent elements
and recursively checking the rest of the list.

7. Find the median of two sorted arrays of possibly different sizes by dividing
them into halves recursively.

8. Determine the number of unique paths from the top-left to the bottom-
right corner of a grid with obstacles, where you can only move right or
down.

9. Given a set of integers, find all subsets whose product equals a given target
value.

10. Implement a recursive function to generate all valid balanced parentheses
expressions for n pairs of parentheses.

11. Find the number of ways to make change for a given amount using a
limited supply of coins.

12. Given an m× n matrix, recursively transpose the matrix (swap rows and
columns).

13. Calculate the number of ways to climb a staircase where you can take 1,
2, or up to k steps at a time, given n stairs.

14. Count the number of ways to tile a 2× n board using 1× 2.

15. Count the number of binary strings of length n that do not contain two
consecutive zeros.

16. Given a chessboard, print all sequences of moves of a knight on a chess-
board such that the knight visits every square only once.

17. Implement a recursive function to solve the N-Queens problem and place
n queens on an n × n chessboard such that no two queens threaten each
other.
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Chapter 13

Computational Approaches
To Problem-Solving

“The problem of computing is not about speed, it’s about understanding.”
– Donald E Knuth

“We build our machines in such a way that they carry out our instructions,
and we in turn must carry out instructions given to us by our machines.”

– Edsger W. Dijkstra

Computational approaches to problem-solving encompass a diverse range of
methodologies that leverage computational power to address complex challenges
across various domains. This chapter explores several fundamental strategies—
brute force, divide-and-conquer, dynamic programming, greedy algorithms, and
randomized approaches—each offering unique insights and techniques to tackle
different classes of problems effectively.

The brute-force approach represents simplicity and exhaustive computation.
It involves systematically checking every possible solution to find the optimal
one, making it ideal for problems like cracking padlocks or guessing passwords.
Despite its simplicity, brute-force methods can be computationally expensive,
especially for problems with large solution spaces, leading to impractical execu-
tion times in real-world applications.

In contrast, the divide-and-conquer approach breaks down problems into
smaller, more manageable sub-problems until they become simple enough to
solve directly. The merge sort algorithm exemplifies this strategy by recur-
sively dividing an array into halves, sorting them, and then merging them
back together. This approach benefits from improved efficiency over brute-force
methods by reducing the time complexity through systematic decomposition.
However, it may incur additional overhead due to recursive function calls and
memory requirements for storing sub-problems.

Dynamic programming focuses on solving problems by breaking them down
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into overlapping sub-problems and storing the results to avoid redundant compu-
tations. Unlike divide-and-conquer, dynamic programming optimizes efficiency
by memoizing intermediate results, significantly reducing computational com-
plexity for problems with overlapping sub-problems. This approach highlights
the trade-off between space and time complexity, making it particularly effective
for optimization problems where solutions depend on prior computed results.

Greedy algorithms, such as maximizing the number of tasks completed
within a limited time frame, make locally optimal choices at each step with
the aim of reaching a global optimum. This approach is motivated by its sim-
plicity and efficiency in finding quick solutions. However, greedy algorithms
may overlook globally optimal solutions due to their myopic decision-making
process, emphasizing immediate gains over long-term strategy.

Lastly, randomized approaches introduce randomness into problem-solving,
offering probabilistic solutions to otherwise deterministic problems. Examples
include scenarios like coupon collecting or hat-checking at a party, where out-
comes depend on random chance rather than deterministic algorithms. Mo-
tivated by their ability to explore solution spaces unpredictably, randomized
approaches provide insights into stochastic phenomena and offer innovative so-
lutions in scenarios where exact solutions are impractical or unavailable.

This chapter will delve into each computational approach in detail, exploring
their theoretical underpinnings, practical applications, advantages, and limita-
tions. By understanding these methodologies, you will gain insights into select-
ing appropriate strategies for solving diverse computational problems effectively
across various disciplines.

13.1 Brute-Force Approach to Problem Solving
“To solve any problem, you need to start with a clear definition of the problem
and then look at all possible solutions.”

– John McCarthy

Many problems are addressed by exploring a vast number of possibilities. For
instance, chess engines evaluate numerous move variations to determine the
”best” positions. This method is known as brute force. Brute force algorithms
take advantage of a computer’s speed, allowing us to rely less on sophisticated
techniques. However, even with brute force, some level of creativity is often re-
quired. For example, a brute force solution might involve evaluating 240 options,
but a more refined approach could potentially reduce this to 220. Such a reduc-
tion can significantly decrease the computational time. The effectiveness of a
brute force approach often hinges on how cleverly the problem is analyzed and
optimized, making it crucial to explore different strategies to improve efficiency.

The brute-force approach is a fundamental method in problem-solving that
involves systematically trying every possible solution to find the optimal one.
This section explores the concept, applications, advantages, and limitations of
the brute-force approach through various examples across different domains.
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The brute-force approach, also known as exhaustive search, operates by
checking all possible solutions systematically, without employing any sophis-
ticated strategies to narrow down the search space. It ensures finding a solution
if it exists within the predefined constraints but can be computationally inten-
sive and impractical for problems with large solution spaces.

Examples of Brute-Force Approach
1. Padlock

Imagine you encounter a padlock with a four-digit numeric code. The
brute-force approach would involve sequentially trying every possible com-
bination from ”0000” to ”9999” until the correct code unlocks the padlock.
Despite its simplicity and guaranteed success in finding the correct com-
bination eventually, this method can be time-consuming, especially for
longer or more complex codes.

2. Password Guessing In the realm of cybersecurity, brute-force attacks
are used to crack passwords by systematically guessing every possible com-
bination of characters until the correct password is identified. This ap-
proach is effective against weak passwords that are short or lack complex-
ity. For instance, attacking a six-character password consisting of letters
and digits would involve testing all 2.18 billion (366) possible combinations
until the correct one is identified.

3. Cryptography: Cracking Codes
In cryptography, brute-force attacks are used to crack codes or encryption
keys by systematically testing every possible combination until the correct
one is found. For example, breaking a simple substitution cipher involves
trying every possible shift in the alphabet until the plain-text message is
deciphered.

4. Sudoku Solving
Brute-force methods can be applied to solve puzzles like Sudoku by sys-
tematically filling in each cell with possible values and backtracking when
contradictions arise. This method guarantees finding a solution but may
require significant computational resources, especially for complex puzzles.

13.1.1 Characteristics of Brute-Force Solutions
1. Exhaustive Search: Every possible solution is examined without any

optimization.

2. Simplicity: Easy to understand and implement.

3. Inefficiency: Often slow and resource-intensive due to the large number
of possibilities.

4. Guaranteed Solution: If a solution exists, the brute-force method will
eventually find it.
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13.1.2 Solving Computational Problems Using
Brute-force Approach Approach

To solve computational problems using the brute-force approach, one must sys-
tematically explore and evaluate all possible solutions to identify the correct
answer. This involves defining the problem clearly, generating every potential
candidate solution, and checking each one against the problem’s criteria to de-
termine its validity. While this method ensures that all possible solutions are
considered, it often results in high computational costs and inefficiencies, espe-
cially for large or complex problems. Despite these limitations, the brute-force
approach provides a straightforward and reliable way to solve problems by ex-
haustively searching the solution space, offering a foundation for understanding
and improving more advanced algorithms.

R The brute-force approach is like searching for a needle in a haystack
by sifting through each strand one by one; it is simple but can be over-
whelmingly inefficient.

Let us look at some examples and see how we can apply the brute-force approach
to solve a computational problem.

13.1.2.1 Problem-1 (String Matching)

The brute-force string matching algorithm is a simple method for finding all
occurrences of a pattern within a text. The idea is to slide the pattern over the
text one character at a time and check if the pattern matches the substring of
the text starting at the current position. Here is a step-by-step explanation:

1. Start at the beginning of the text: Begin by aligning the pattern with
the first character of the text.

2. Check for a match: Compare the pattern with the substring of the text
starting at the current position. If the substring matches the pattern,
record the position.

3. Move to the next position: Shift the pattern one character to the right
and repeat the comparison until you reach the end of the text.

4. Finish: Continue until all possible positions in the text have been checked.

This approach ensures that all possible starting positions in the text are con-
sidered, but it can be slow for large texts due to its time complexity.

Here is how you can implement the brute-force string-matching algorithm in
Python:

def brute_force_string_match(text, pattern):
n = len(text) # Length of the text
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m = len(pattern) # Length of the pattern

for i in range(n - m + 1):
substring = text[i:i + m]
""" Loop over each possible starting index in the text,

Extracting the substring of the text from the current
position """

# Compare the substring with the pattern
if substring == pattern:

print(f"Pattern found at index {i}")

# Example usage
text = "ABABDABACDABABCABAB"
pattern = "ABABCABAB"
brute_force_string_match(text, pattern)

Explanation:

1. Function Definition: The function brute_force_string_match takes
two arguments: text and pattern.

2. Length Calculation: It calculates the lengths of both the text and
pattern to determine how many possible starting positions there are.

3. Loop Over Positions: It uses a for loop to slide the pattern across the
text. The loop runs from 0 to n - m + 1, where n is the length of the
text and m is the length of the pattern.

4. Substring Extraction: At each position i, the code extracts a substring
from the text that has the same length as the pattern (text[i:i + m]).

5. Comparison: It then compares this substring with the pattern. If they
match, it prints the starting index where the pattern was found.

6. Example Usage: The example shows how to call the function with a
sample text and pattern. In this case, the function prints the indices
where the pattern occurs within the text.

This implementation is straightforward and guarantees finding all occurrences
of the pattern, but it may not be efficient for large texts or patterns due to its
((n - m + 1) * m) time complexity.

Given the example usage in our brute_force_string_match function:
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text = "ABABDABACDABABCABAB"
pattern = "ABABCABAB"
brute_force_string_match(text, pattern)

Here is what the output of the function will be:

Pattern found at index 10

The function searches through the text and finds the pattern starting at index
10. In this case, ”ABABCABAB” begins at position 10 in the text, so that
is where the function prints the message indicating the pattern’s location.

The function does not find the pattern at any other starting position in the
provided text, so only this single index is printed.

13.1.2.2 Problem-2 (Subset Sum Problem)

The Subset Sum Problem involves determining if there exists a subset of a
given set of numbers that sums up to a specified target value. The brute-force
approach to solve this problem involves generating all possible subsets of the
set and checking if the sum of any subset equals the target value.

Here is how the brute-force approach works:

1. Generate subsets: Iterate over all possible subsets of the given set of
numbers.

2. Calculate sums: For each subset, calculate the sum of its elements.

3. Check target: Compare the sum of each subset with the target value.

4. Return result: If a subset’s sum matches the target, return that subset.
Otherwise, conclude that no such subset exists.

This method guarantees finding a solution if one exists but can be inefficient for
large sets due to its exponential time complexity.

Here is a Python code to implement the brute-force approach for the Subset
Sum Problem:

def subset_sum_brute_force(nums, target):
n = len(nums)

# Loop over all possible subsets

for i in range(1 << n): # There are 2^n subsets
subset = [nums[j] for j in range(n) if (i & (1 << j))]
if sum(subset) == target:

return subset

return None
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# Example usage
nums = [3, 34, 4, 12, 5, 2]
target = 9
result = subset_sum_brute_force(nums, target)
if result:

print(f"Subset with target sum {target} found: {result}")
else:

print("No subset with the target sum found.")

Explanation:

1. Function Definition:subset_sum_brute_force takes a list of num-
bers (nums) and a target sum (target).

2. Subset Generation: The loop for i in range(1 « n) iterates over all
possible subsets. Here, 1 « n equals 2n, which is the total number of
subsets for n elements. Each subset is generated using a bitmask approach:
for each bit in the integer i, if it is set, the corresponding element is
included in the subset.

3. Subset Construction: The subset is constructed by including elements
where the corresponding bit in i is set ((i & (1 « j))).

4. Sum Calculation: For each subset, the sum of its elements is calculated
using sum(subset).

5. Target Check: If the sum of the subset equals the target, the subset is
returned.

6. Return Result: If no subset matches the target sum, the function returns
None.

7. Example Usage: The example demonstrates finding a subset that sums
up to 9 in the list [3, 34, 4, 12, 5, 2]. The output will either show the
subset that matches the target or indicate that no such subset was found.

This brute-force approach is straightforward and guarantees finding a solution
if one exists, but may not be efficient for large sets due to its exponential time
complexity.

Given the example usage in our subset_sum_brute_force function:

nums = [3, 34, 4, 12, 5, 2]
target = 9
result = subset_sum_brute_force(nums, target)
if result:

print(f"Subset with target sum {target} found: {result}")
else:

print("No subset with the target sum found.")
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Here is what the output of the function will be:

Subset with target sum 9 found: [3, 4, 2]

The function generates all possible subsets of the list nums and checks if any
of them sum up to the target value 9.

• Subset Generation: The function iterates through all possible subsets.
For each subset, it calculates the sum and checks if it matches the target.

• Subset Found: In this case, the subset [3, 4, 2] sums up to 9, which
matches the target value. Therefore, this subset is returned and printed.

If no such subset were found, the function would print ”No subset with the
target sum found.”

13.1.2.3 Problem-3 (Sudoku Solver)

The Sudoku Solver using the brute-force approach is a method to solve a Sudoku
puzzle by trying every possible number in each empty cell until the puzzle is
solved. The brute-force algorithm systematically fills in each cell with numbers
from 1 to 9 and checks if the puzzle remains valid after each placement. If a
placement leads to a valid state, the algorithm proceeds to the next empty cell.
If a placement leads to a contradiction, the algorithm backtracks and tries the
next number.

Here is a step-by-step explanation:

1. Find an Empty Cell: Locate the first empty cell in the Sudoku grid.

2. Try Numbers: Attempt to place each number from 1 to 9 in the empty
cell.

3. Check Validity: Verify that placing the number does not violate Sudoku
rules:

• No repeated numbers in the same row.
• No repeated numbers in the same column.
• No repeated numbers in the same 3x3 sub-grid.

4. Move to Next Cell: If the placement is valid, proceed to the next empty
cell.

5. Backtrack if Necessary: If a placement leads to an invalid state later,
undo the placement (backtrack) and try the next number.

6. Complete: Continue until the Sudoku puzzle is fully solved or all possi-
bilities are exhausted.
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The brute-force approach guarantees finding a solution if one exists, but it can
be inefficient for larger puzzles due to its exhaustive nature.

Here is the Python code for solving a Sudoku puzzle using the brute-force
approach with recursive backtracking::

def is_valid(board, row, col, num):
# Check if num is not repeated in the row

if num in board[row]:
return False

# Check if num is not repeated in the column

if num in (board[i][col] for i in range(9)):
return False

# Check if num is not repeated in the 3x3 sub-grid

start_row, start_col = 3 * (row // 3), 3 * (col // 3)
for i in range(start_row, start_row + 3):

for j in range(start_col, start_col + 3):
if board[i][j] == num:

return False

return True

def solve_sudoku(board):
for row in range(9):

for col in range(9):
if board[row][col] == 0: # Find an empty cell

for num in range(1, 10): # Try all numbers
# from 1 to 9

if is_valid(board, row, col, num):
board[row][col] = num
# Place the number
if solve_sudoku(board):

return True
board[row][col] = 0 # Backtrack if

needed
return False # Trigger backtracking

return True # Puzzle solved

# Example usage
sudoku_board = [
[5, 3, 0, 0, 7, 0, 0, 0, 0],
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[6, 0, 0, 1, 9, 5, 0, 0, 0],
[0, 9, 8, 0, 0, 0, 0, 6, 0],
[8, 0, 0, 0, 6, 0, 0, 0, 3],
[4, 0, 0, 8, 0, 3, 0, 0, 1],
[7, 0, 0, 0, 2, 0, 0, 0, 6],
[0, 6, 0, 0, 0, 0, 2, 8, 0],
[0, 0, 0, 4, 1, 9, 0, 0, 5],
[0, 0, 0, 0, 8, 0, 0, 7, 9]
]

if solve_sudoku(sudoku_board):
for row in sudoku_board:

print(row)
else:

print("No solution exists.")

Explanation:

1. is_valid Function: This function checks if placing a number in a specific
cell is valid according to Sudoku rules:

• Row Check: Ensures the number is not already present in the same
row.

• Column Check: Ensures the number is not already present in the
same column.

• Sub-grid Check: Ensures the number is not already present in the
3x3 sub-grid.

2. solve_sudoku Function:

• Find Empty Cell: Iterates through the grid to locate an empty cell
(0).

• Try Numbers: For each empty cell, try placing numbers from 1 to
9.

• Check Validity: Uses is_valid to check if the placement is valid.
• Recursive Call: Recursively attempts to solve the rest of the board

with the current placement.
• Backtrack: If no valid number can be placed, reset the cell and try

the next number.
• Completion: If all cells are filled validly, returns True. If no cells

are left to fill, returns True indicating the board is solved.

3. Example Usage: Demonstrates solving a Sudoku puzzle with a given
sudoku_board. If the puzzle is solved, the board is printed row by row.
If no solution exists, a message is displayed.
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This brute-force algorithm ensures a solution if one exists but can be slow due
to its exhaustive search approach.

Here is what the output would look like if the provided solve_sudoku
function successfully solves the given Sudoku puzzle:

[5, 3, 4, 6, 7, 8, 9, 1, 2]
[6, 7, 2, 1, 9, 5, 3, 4, 8]
[1, 9, 8, 3, 4, 2, 5, 6, 7]
[8, 5, 9, 7, 6, 1, 4, 2, 3]
[4, 2, 6, 8, 5, 3, 7, 9, 1]
[7, 1, 3, 9, 2, 4, 8, 5, 6]
[9, 6, 1, 5, 3, 7, 2, 8, 4]
[2, 8, 7, 4, 1, 9, 6, 3, 5]
[3, 4, 5, 2, 8, 6, 1, 7, 9]

Explanation of the Output:

1. Completed Sudoku Grid: Each row shows a valid configuration where
all rows, columns, and 3x3 sub-grids contain the numbers 1 through 9
without repetition.

2. Successful Solution: The solve_sudoku function filled all empty cells
(originally 0 values) with valid numbers, resulting in a fully completed
Sudoku board.

If the solve_sudoku function did not find a solution, it would print:

No solution exists.

This approach guarantees to find a solution if one exists but might be slow for
more complex or larger Sudoku puzzles due to its exhaustive nature.

R Brute-force methods offer a straightforward path to solving problems
by exploring every possible solution, but they often become impractical as
the problem size grows.

13.1.3 Advantages and Limitations of Brute-Force
Approach

Advantages of Brute-Force Approach

1. Guaranteed Solution: Brute-force methods ensure finding a solution if
one exists within the predefined constraints.

2. Simplicity: The approach is straightforward to implement and under-
stand, requiring minimal algorithmic complexity.
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3. Versatility: Applicable across various domains where an exhaustive search
is feasible, such as puzzle solving, cryptography, and optimization prob-
lems.

Limitations of Brute-Force Approach

1. Computational Intensity: It can be highly resource-intensive, espe-
cially for problems with large solution spaces or complex constraints.

2. Time Complexity: Depending on the problem size, brute-force ap-
proaches may require impractically long execution times to find solutions.

3. Scalability Issues: In scenarios with exponentially growing solution
spaces, brute-force methods may become impractical or infeasible to exe-
cute within reasonable time constraints.

R Simplicity is the hallmark of brute-force algorithms; they operate
without complex strategies but may suffer from exponential growth in
computational demands.

13.1.4 Optimizing Brute-force Solutions
• Pruning: Eliminate certain candidates early if they cannot possibly be a

solution. For example, in a search tree, cutting off branches does not lead
to feasible solutions.

• Heuristics: Use rules of thumb to guide the search and reduce the number
of candidates.

• Divide and Conquer: Break the problem into smaller, more manageable
parts, solve each part individually, and combine the results.

• Dynamic Programming: Store the results of subproblems to avoid re-
dundant computations.

R While brute-force approaches can serve as a baseline for evaluating
other algorithms, their inefficiency limits their practical use to small-scale
problems or as a verification tool.

The brute-force approach is a fundamental but often inefficient problem-solving
technique. While it guarantees finding a solution if one exists, its practical use
is limited by computational constraints. Understanding brute-force methods is
essential for developing more sophisticated algorithms and optimizing problem-
solving strategies. This section provides an in-depth exploration of the brute-
force approach for solving computational problems, highlighting its simplicity,
applications, limitations, and potential optimizations.
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13.2 Divide-and-conquer Approach to Problem
Solving

The process of breaking down a complex problem into simpler sub-problems is
not only a fundamental programming technique but also a powerful strategy for
managing complexity.”

– Donald E Knuth

To illustrate the divide-and-conquer approach, imagine a classroom scenario
where students are asked to organize a large number of books in a library. The
problem of categorizing and shelving thousands of books can seem difficult at
first. By applying divide-and-conquer principles, the task can be simplified sig-
nificantly. The students can start by dividing the books into smaller groups
based on genres, such as fiction, non-fiction, and reference. Each genre can
then be further subdivided into categories like science fiction, historical novels,
and biographies. Finally, within each category, the books can be organized al-
phabetically by author. This method of dividing the problem into manageable
parts, solving each part, and then combining the results effectively demonstrates
how divide-and-conquer can make complex tasks more approachable.

In the realm of project management, divide-and-conquer strategies are es-
sential for handling large projects. For example, consider the construction of
a high-rise building. The project is divided into smaller tasks, such as founda-
tion work, structural framework, electrical installations, and interior finishes.
Each task is managed by different teams or contractors specialized in that area.
By breaking the project into these distinct components, project managers can
ensure that each part is completed efficiently and effectively. This modular
approach allows for parallel progress, timely completion, and integration of the
individual tasks to achieve the final goal of constructing the building.

In software development, the divide-and-conquer approach is frequently em-
ployed in designing complex systems and applications. For instance, consider
developing a comprehensive e-commerce platform. The platform is divided into
various functional modules, such as user authentication, product catalog, shop-
ping cart, and payment processing. Each module is developed and tested inde-
pendently, allowing developers to focus on specific aspects of the system. Once
all modules are completed, they are integrated to form a cohesive application.
This method ensures that the development process is manageable and that each
component functions correctly before being combined into the final product.

In healthcare, divide-and-conquer strategies are applied in diagnostic pro-
cesses and treatment plans. For example, when diagnosing a complex medical
condition, doctors might first divide the patient’s symptoms into different cat-
egories, such as neurological, cardiovascular, and respiratory. Each category is
investigated separately using targeted tests and consultations with specialists.
The results from these investigations are then combined to form a comprehensive
diagnosis and treatment plan. This approach helps in managing the complex-
ity of medical diagnoses and ensures a thorough and accurate evaluation of the
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patient’s health.
Finally, consider the field of logistics and supply chain management, where

divide-and-conquer techniques are used to optimize the distribution of goods.
For example, a company managing the supply chain for a large retailer might
divide the supply chain into regional distribution centers. Each center handles
a specific geographic area and manages local inventory, transportation, and
delivery. By decentralizing the management of the supply chain into smaller,
regional units, the company can improve efficiency, reduce costs, and enhance
service levels. The results from each distribution center are then integrated to
ensure a seamless supply chain operation across all regions.

As illustrated in these examples, the divide-and-conquer approach is also a
fundamental computational problem-solving technique used to solve problems
by breaking them down into smaller, more manageable sub-problems similar
to the original problem. The basic idea is to divide the problem into smaller
sub-problems, solve each sub-problem independently, and then combine their
solutions to solve the original problem. This method is particularly effective
for problems that exhibit recursive structure and can be broken into similar
sub-problems.

Key Steps of Divide-and-Conquer:

1. Divide: Split the original problem into smaller sub-problems that are eas-
ier to solve. The sub-problems should be similar to the original problem.
Consider the task of organizing a large set of files into a well-structured
directory system. The first step involves breaking down this problem into
smaller, more manageable subproblems. For instance, you might divide
the files by their type (e.g., documents, images, videos) or by their project
affiliation. Each subset of files is then considered a subproblem, which is
more straightforward to organize than the entire set of files. The key is to
ensure that each subset is similar to the original problem but simpler to
handle individually.

2. Conquer: Solve the smaller sub-problems. If the sub-problems are small
enough, solve them directly. Otherwise, apply the divide-and-conquer
approach recursively to these sub-problems
Once the files are divided into smaller subsets, each subset is organized
recursively. For example, you could sort documents into subcategories
such as reports, presentations, and spreadsheets. Each of these categories
might be further divided into subfolders based on date or project. This
recursive approach allows you to systematically manage and categorize
each subset. For very small subsets, such as a single folder with a few files,
a direct solution is applied without further division, making the problem-
solving process more manageable.

3. Combine: Combine the solutions of the sub-problems to form the solution
to the original problem.
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After each subset of files is organized, the final step is to combine these
organized subsets into the overall directory system. This involves merging
the categorized folders into a hierarchical structure that reflects the orig-
inal file organization plan. The result is a complete and well-structured
directory system that maintains the overall organization and makes it easy
to locate and manage files. The combination of the organized subsets en-
sures that the entire file system is coherent and functional, achieving the
goal of efficient file organization.

By applying these steps, the complex task of organizing a large set of files is
broken down into manageable steps, leveraging recursion to handle each subset
and integrating the results into a comprehensive directory system. This section
will explore the fundamental principles of the divide-and-conquer strategy, its
applications, and its advantages and disadvantages.

13.2.1 Principles of Divide-and-Conquer
13.2.1.1 Divide

The first step involves breaking down the problem into smaller subproblems.
This division should be done so that the subproblems are similar to the original
problem. The key is to ensure that each subproblem is easier to solve than the
original.

13.2.1.2 Conquer

Once the problem is divided, each subproblem is solved recursively. This step
leverages the power of recursion, making the problem-solving process more man-
ageable. For very small subproblems, a direct solution is applied without further
division.

13.2.1.3 Combine

The final step involves combining the solutions of the subproblems to form
the solution to the original problem. This step often requires merging re-
sults in a manner that maintains the problem’s overall structure and require-
ments.

R Divide-and-conquer breaks a problem into smaller, manageable sub-
problems, solving each independently and combining their solutions to
address the original problem.

Let us walk through an example to get an idea about how the principle of
divide-and-conquer is applied to solve computational problems.

Example: Merge Sort Algorithm
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Merge Sort is a classic example of the divide-and-conquer strategy used for
sorting an array of elements. It operates by recursively breaking down the array
into progressively smaller sections. The core idea is to split the array into two
halves, sort each half, and then merge them back together. This process con-
tinues until the array is divided into individual elements, which are inherently
sorted.

The merging process relies on a straightforward principle: when combining
two sorted halves, the smallest value of the entire array must be the smallest
value from either of the two halves. By iteratively comparing the smallest
elements from each half and appending the smaller one to the sorted array, we
efficiently merge the halves into a fully sorted array. This approach is not only
intuitive but also simplifies the coding of the recursive splits and the merging
procedure. Here is how it works:

1. Divide: Split the array into two halves.

2. Conquer: Recursively sort both halves.

3. Combine: Merge the two sorted halves to produce the sorted array.

To get an idea of how the Merge sort works, let us visualize the working of the
algorithm. Visualizing the Merge Sort algorithm helps to understand how the
divide-and-conquer approach works by breaking down the array into smaller
parts and then merging them back together. Here’s a step-by-step visualization
of Merge Sort:

Visualization Steps:

1. Divide: The array is recursively divided into two halves until each sub-
array contains a single element.

2. Merge: The sub-arrays are then merged in a sorted order.

Let us use an example array: [38, 27, 43, 3, 9, 82, 10].

Step 1: Divide the Array

1. Initial Array: [38, 27, 43, 3, 9, 82, 10]
2. Divide into Halves:

– Left Half: [38, 27, 43]
– Right Half: [3, 9, 82, 10]

3. Further Divide:
– Left Half: [38, 27, 43] becomes:

∗ [38] and [27, 43]
∗ [27, 43] becomes:
· [27] and [43]
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– Right Half: [3, 9, 82, 10] becomes:
∗ [3, 9] and [82, 10]
∗ [3, 9] becomes:
· [3] and [9]

∗ [82, 10] becomes:
· [82] and [10]

Step 2: Merge the Arrays
1. Merge Smaller Arrays:

– [27] and [43] are merged to form [27, 43]
– [3] and [9] are merged to form [3, 9]
– [82] and [10] are merged to form [10, 82]

2. Merge Larger Arrays:
– [38] and [27, 43] are merged to form [27, 38, 43]
– [3, 9] and [10, 82] are merged to form [3, 9, 10, 82]

3. Final Merge:
– [27, 38, 43] and [3, 9, 10, 82] are merged to form the

sorted array [3, 9, 10, 27, 38, 43, 82]

This is how the merge sort algorithm works, breaking down the problem into
smaller subproblems, solving each independently, and combining the results to
get the final sorted array.

To visualize this process, here is a diagram representing the Merge Sort:
Explanation:

1. Initial Split: The array is divided into smaller chunks recursively.

2. Recursive Sorting: Each chunk is sorted individually.

3. Merging: The sorted chunks are merged back together in sorted order.

By following this visualization, you can see how the divide-and-conquer ap-
proach efficiently breaks down the problem and then builds up the solution
step-by-step. This method ensures that each element is placed in its correct
position in the final sorted array.

Here is a detailed explanation in English of the merge sort algorithm along
with the merge function:

1. Function mergeSort

• Check if the array has one or zero elements. If true, return the array
as it is already sorted.

• Otherwise, find the middle index of the array.
• Split the array into two halves: from the beginning to the middle and

from the middle to the end.
• Recursively apply mergeSort to the first half and the second half.
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38, 27, 43, 3, 9, 82, 10

38, 27, 43 3, 9, 82, 10

38 27, 43 3, 9 82, 10

27 43 3 9 82 10

27, 43 3, 9 10, 82

27, 38, 43
3, 9, 10, 82

3, 9, 10, 27, 38, 43, 82

Figure 13.1: The recursion tree given when performing a recursive split of the
array [38, 27, 43, 3, 9, 82, 10].
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• Merge the two sorted halves using the merge function.
• Return the merged and sorted array.

2. Function merge

• Create an empty list called sorted_arr to store the sorted elements.
• While both halves have elements:

– Compare the first element of the left half with the first element
of the right half.

– Remove the smaller element and append it to the sorted_arr
list.

• If the left half still has elements, append them all to the sorted_arr
list.

• If the right half still has elements, append them all to the sorted_arr
list.

• Return the sorted_arr list, which now contains the sorted elements
from both halves.

Here is a Python implementation of Merge Sort

def merge_sort(arr):
""" Sorts an array using the merge sort algorithm."""
if len(arr) <= 1:

return arr

# Divide the array into two halves
mid = len(arr) // 2
left_half = merge_sort(arr[:mid])
right_half = merge_sort(arr[mid:])

# Combine the sorted halves
return merge(left_half, right_half)

def merge(left, right):
""" Merges two sorted arrays into one sorted array. """
sorted_arr = []
i = j = 0

# Merge the two arrays
while i < len(left) and j < len(right):

if left[i] < right[j]:
sorted_arr.append(left[i])
i += 1

else:
sorted_arr.append(right[j])
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j += 1

# Add remaining elements (if any)
while i < len(left):

sorted_arr.append(left[i])
i += 1

while j < len(right):
sorted_arr.append(right[j])
j += 1

return sorted_arr

# Example usage
array = [38, 27, 43, 3, 9, 82, 10]
sorted_array = merge_sort(array)
print("Sorted array:", sorted_array)

Explanation:

1. merge_sort Function:

• If the array has one or zero elements, it’s already sorted.
• The array is divided into two halves recursively until the base case is

reached (arrays of size one).
• The sorted halves are combined using the merge function.

2. merge Function:

• Takes two sorted arrays and merges them into one sorted array.
• Compares elements from both arrays and appends the smaller ele-

ment to the result array.
• After one array is exhausted, append any remaining elements from

the other array.

13.2.2 Solving Computational Problems Using Divide
and Conquer Approach

Let us see how we can apply the principles of the divide-and-conquer approach
to solve computational problems.

13.2.2.1 Problem-1 (Finding the Maximum Element in an Array)

Given an array of integers, find the maximum value in the array.

Step-by-Step Solution

1. Initial Setup:
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• Begin with the entire array and determine the range to process. Ini-
tially, this range includes the entire array from the first element to
the last element.

2. Divide

• If the array contains more than one element, split it into two approx-
imately equal halves. This splitting continues recursively until each
subarray has only one element.

3. Conquer:

• For subarrays with only one element, that element is trivially the
maximum for that subarray.

• For larger subarrays, recursively apply the same process to each half
of the subarray.

4. Combine:

• After finding the maximum element in each of the smaller subarrays,
combine the results by comparing the maximum values from each
half. Return the largest of these values as the maximum for the
original array.

Python Implementation

Here is how to implement this algorithm in Python

def find_max(arr, left, right):
# Base case: If the array segment has only one element
if left == right:

return arr[left]

# Divide: Find the middle point of the current segment
mid = (left + right) // 2

""" Conquer: Recursively find the maximum in the left and
right halves """

max_left = find_max(arr, left, mid) # Maximum in the left
half
max_right = find_max(arr, mid + 1, right) # Maximum in the
right half

# Combine: Return the maximum of the two halves

return max(max_left, max_right)
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# Example usage
array = [3, 6, 2, 8, 7, 5, 1]
result = find_max(array, 0, len(array) - 1)
print("Maximum element:", result) # Output: Maximum element: 8

Step-by-Step Explanation:

1. Initial Setup:

• The find_max function is called with the entire array and indices
that cover the whole array. For example, find_max(array, 0,
len(array) - 1).

2. Divide:

• Calculate the middle index mid of the current array segment. For
the array [3, 6, 2, 8, 7, 5, 1], mid would be (0 + 6) // 2 = 3.

• Split the array into two halves based on this mid index
– Left half: [3, 6, 2, 8]
– Right half: [7, 5, 1]

3. Conquer:

• Recursively apply the find_max function to the left half [3, 6, 2,
8]:
– Split into [3, 6] and [2, 8]
– Further split [3, 6] into [3] and [6], finding 3 and 6, respectively.
– Combine these to get the maximum 6.
– Similarly, split [2, 8] into [2] and [8], finding 2 and 8, respec-

tively.
– Combine these to get the maximum 8.
– Combine 6 and 8 from the two halves to get 8.

• Apply the same process to the right half [7, 5, 1]:
– Split into [7] and [5, 1]
– Further split [5, 1] into [5] and [1], finding 5 and 1, respectively.
– Combine these to get the maximum 5.
– Combine 7 and 5 from the two halves to get 7.

4. Combine:

• Finally, compare the maximums obtained from the left half (8) and
the right half (7).

• Return the larger value, which is 8.

This method efficiently finds the maximum element in the array by recursively
dividing the problem, solving the subproblems, and combining the results.
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13.2.2.2 Problem-2 (Finding the Maximum Subarray Sum)

Given an array of integers, which include both positive and negative numbers,
find the contiguous subarray that has the maximum sum.

Step-by-Step Solution

1. Initial Setup:

• If the array contains only one element, that element is the maximum
subarray sum.

2. Divide:

• Divide the array into two approximately equal halves. This involves
finding the middle index of the array and separating the array into a
left half and a right half.

3. Conquer:

• Recursively find the maximum subarray sum for:
– The left half of the array.
– The right half of the array.
– The subarray that crosses the middle boundary between the two

halves.

4. Combine:

• Combine the results from the three areas:
– The maximum subarray sum in the left half.
– The maximum subarray sum in the right half.
– The maximum subarray sum that crosses the middle.

• Return the largest of these three values.

Python Implementation

Here is the Python code implementing this algorithm

def max_crossing_sum(arr, left, mid, right):
# Find maximum sum of subarray crossing the middle point

# Start from mid and move left

left_sum = float('-inf')
sum_left = 0
for i in range(mid, left - 1, -1):

sum_left += arr[i]
if sum_left > left_sum:
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left_sum = sum_left

# Start from mid+1 and move right

right_sum = float('-inf')
sum_right = 0
for i in range(mid + 1, right + 1):

sum_right += arr[i]
if sum_right > right_sum:

right_sum = sum_right

""" Return the maximum sum of the subarray that crosses the
mid """

return left_sum + right_sum

def max_subarray_sum(arr, left, right):
# Base case: only one element

if left == right:
return arr[left]

# Divide the array into two halves
mid = (left + right) // 2

# Find maximum subarray sum in the left half
left_max = max_subarray_sum(arr, left, mid)

# Find maximum subarray sum in the right half
right_max = max_subarray_sum(arr, mid + 1, right)

# Find maximum subarray sum crossing the middle
cross_max = max_crossing_sum(arr, left, mid, right)

# Return the maximum of the three results
return max(left_max, right_max, cross_max)

# Example usage
array = [2, 3, -4, 5, -1, 2, 3, -2, 4]
result = max_subarray_sum(array, 0, len(array) - 1)
print("Maximum subarray sum:", result) # Output: Maximum

subarray sum: 9

Step-by-Step Explanation:
1. Initial Setup:

• If the array segment contains only one element (base case), return



13.2. DIVIDE-AND-CONQUER APPROACH TO PROBLEM SOLVING 241

that element as the maximum subarray sum.

2. Divide:

• Calculate the middle index: mid = (left + right) // 2.
• Divide the array into two subarrays:

– Left subarray from left to mid.
– Right subarray from mid + 1 to right.

3. Conquer:

• Find Maximum Subarray Sum in the Left Half:
– Recursively call max_subarray_sum on the left half.

• Find Maximum Subarray Sum in the Right Half:
– Recursively call max_subarray_sum on the right half.

• Find Maximum Subarray Sum Crossing the Middle:
– Call max_crossing_sum to find the maximum subarray sum

that crosses the midpoint of the array. This involves calculating
the maximum sum of the subarray that ends in the left half and
starts in the right half.

4. Combine:

• The result is the maximum of:
– The maximum sum found in the left half.
– The maximum sum found in the right half.
– The maximum sum of the subarray crossing the middle.

Example Walkthrough:

Array: [2, 3, -4, 5, -1, 2, 3, -2, 4]

1. Initial Setup:

• The array is divided into subarrays until base cases with single ele-
ments are reached.

2. Divide:

• For the array [2, 3, -4, 5, -1, 2, 3, -2, 4], mid = 4, so divide into:
– Left half: [2, 3, -4, 5, -1]
– Right half: [2, 3, -2, 4]

3. Conquer:

• Left Half [2, 3, -4, 5, -1]:
– Further divide into [2, 3] and [-4, 5, -1].
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– Find maximum subarray sums for these segments and combine
them.

• Right Half [2, 3, -2, 4]:
– Further divide into [2, 3] and [-2, 4].
– Find maximum subarray sums for these segments and combine

them.
• Crossing Subarray:

– Calculate the maximum sum of subarrays crossing the middle
index for both halves.

4. Combine:

• Compare the maximum subarray sums from the left half, right half,
and crossing subarray to get the overall maximum.

Explanation of Crossing Subarray

Consider the array: [2, 3, -4, 5, -1, 2, 3, -2, 4]

Let us find the maximum subarray sum that crosses the midpoint of the ar-
ray.

Step-by-Step Explanation:

1. Divide the Array:

• Suppose we are working with the whole array and the midpoint is
calculated to be 4. So we divide the array into two halves:
– Left half: [2, 3, -4, 5, -1]
– Right half: [2, 3, -2, 4]

• Our goal is to find the maximum sum of subarrays that might cross
this midpoint between the two halves.

2. Find the Maximum Crossing Subarray:

• To find the maximum subarray sum that crosses the midpoint, we
need to consider two parts:
– The part of the subarray that extends from the midpoint to the

left end
– The part of the subarray that extends from the midpoint to the

right end.
• Calculate the Maximum Sum of the Left Part:

– Start from the midpoint and extend leftward.
– Track the maximum sum while extending leftward from the mid-

point.
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– In the example, the midpoint is 4, so we start from index 4 and
move left.
Array segment: [-1, 5, -4, 3, 2]

– Compute maximum subarray sum ending at the midpoint:
∗ Start from -1, sum is -1.
∗ Extend to include 5: sum becomes 4.
∗ Extend to include -4: sum becomes 0.
∗ Extend to include 3: sum becomes 3.
∗ Extend to include 2: sum becomes 5.

The maximum subarray sum ending at the midpoint (and ex-
tending leftward) is 5.

• Calculate the Maximum Sum of the Right Part:
– Start from the midpoint + 1 and extend rightward.
– Track the maximum sum while extending rightward from the

midpoint
Array segment: [2, 3, -2, 4]

– Compute maximum subarray sum starting from the midpoint +
1:
∗ Start from 2, sum is 2.
∗ Extend to include 3: sum becomes 5.
∗ Extend to include -2: sum becomes 3.
∗ Extend to include 4: sum becomes 7.

The maximum subarray sum starting at midpoint + 1 (and ex-
tending rightward) is 7.

• Combine the Results:
– The maximum sum of the subarray that crosses the midpoint is

the sum of the maximum sum of the left part and the maximum
sum of the right part.

– From the above calculations, the maximum crossing sum is 5
(left) + 7 (right) = 12.

The crossing subarray that yields the maximum sum spans the midpoint and
consists of elements from both the left and right parts. By combining the best
sums of subarrays extending from the midpoint, we get the total maximum
crossing sum.

This approach efficiently computes the maximum subarray sum using the
divide and conquer strategy, which can be particularly useful for larger arrays
due to its manageable number of comparisons.

R By recursively dividing a complex problem into simpler components,
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the divide-and-conquer approach transforms large-scale challenges into solv-
able tasks with a clear, structured strategy.

13.2.3 Advantages and Disadvantages of Divide and
Conquer Approach

Advantages of Divide and Conquer Approach

1. Simplicity in Problem Solving: By breaking a problem into smaller
subproblems, each subproblem is simpler to understand and solve, making
the overall problem more manageable.

2. Efficiency: Many divide-and-conquer algorithms, such as merge sort
and quicksort, have optimal or near-optimal time complexities. These
algorithms often have lower time complexities compared to iterative ap-
proaches.

3. Modularity: Divide-and-conquer promotes a modular approach to problem-
solving, where each subproblem can be handled by a separate function or
module. This makes the code easier to maintain and extend.

4. Reduction in Complexity: By dividing the problem, the overall com-
plexity is reduced, and solving smaller subproblems can lead to simpler
and more efficient solutions.

5. Parallelism: The divide-and-conquer approach can easily be parallelized
because the subproblems can be solved independently and simultaneously
on different processors, leading to potential performance improvements.

6. Better Use of Memory: Some divide-and-conquer algorithms use mem-
ory more efficiently. For example, the merge sort algorithm works well
with large data sets that do not fit into memory, as it can process subsets
of data in chunks.

Disadvantages of Divide and Conquer Approach

1. Overhead of Recursive Calls: The recursive nature can lead to signif-
icant overhead due to function calls and maintaining the call stack. This
can be a problem for algorithms with deep recursion or large subproblem
sizes.

2. Increased Memory Usage: Divide-and-conquer algorithms often re-
quire additional memory for storing intermediate results, which can be a
drawback for memory-constrained environments.

3. Complexity of Merging Results: The merging step can be complex
and may not always be straightforward. Efficient merging often requires
additional algorithms and can add to the complexity of the overall solution.
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4. Not Always the Most Efficient: For some problems, divide-and-conquer
might not be the most efficient approach compared to iterative or dynamic
programming methods. The choice of strategy depends on the specific
problem and context.

5. Difficulty in Implementation: Implementing divide-and-conquer algo-
rithms can be more challenging, especially for beginners. The recursive
nature and merging steps require careful design to ensure correctness and
efficiency.

6. Stack Overflow Risk: Deep recursion can lead to stack overflow errors if
the recursion depth exceeds the system’s stack capacity, particularly with
large inputs or poorly designed algorithms.

R The power of divide-and-conquer lies in its efficiency; it often reduces
the problem’s complexity by tackling smaller parts, which can lead to
significant performance improvements.

The divide-and-conquer approach is a versatile and powerful problem-solving
strategy that breaks down complex problems into simpler subproblems. Its ap-
plications span various fields, including sorting, searching, and computational
geometry. While it offers significant advantages in terms of efficiency and sim-
plicity, it also comes with challenges such as recursion overhead and merge step
complexity. Understanding and mastering this technique is essential for tackling
a wide range of algorithmic problems.

13.3 Dynamic Programming Approach to
Problem Solving

“Dynamic programming is a method for solving complex problems by breaking
them down into simpler subproblems. It is a way of combining solutions to
overlapping subproblems to avoid redundant calculations.”

– Richard Bellman

Imagine you need to travel by taxi from Thiruvananthapuram to Ernakulam.
You have several possible routes through different cities, and your goal is to
find the one that gets you to Ernakulam in the shortest time, which you call the
optimal route. Your cousin in Alappuzha knows the best route from Alappuzha
to Ernakulam. Given that any optimal route from Thiruvananthapuram must
pass through Alappuzha, you can simplify your task by first finding the best
route from Thiruvananthapuram to Alappuzha, which is closer and has fewer
possible routes. Once you have this route, you can follow the one your cousin
has suggested from Alappuzha to Ernakulam.
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This approach is based on the principle of optimality, which states that any
optimal route from Thiruvananthapuram to Ernakulam via Alappuzha must
have optimal sub-routes. Specifically, the segment from Alappuzha to Ernaku-
lam must be the best route between these two cities, and the segment from
Thiruvananthapuram to Alappuzha must also be optimal. More generally, if
you have an optimal route consisting of cities C1,C2, . . . ,Cp, then each seg-
ment of this route (from C1 to C2, C2 to C3, etc.) must be optimal on its
own. By solving the problem in smaller parts—finding the best route from
Thiruvananthapuram to Alappuzha and using the known optimal route from
Alappuzha to Ernakulam—you can effectively solve the larger problem. This
principle, known as Bellman’s principle of optimality, was developed by Richard
Bellman in the late 1940s and applies to various optimization problems beyond
travel routes. In this section, we will explore how dynamic programming lever-
ages this principle to tackle complex optimization challenges.

Dynamic programming (DP) is a method for solving problems by breaking
them down into smaller overlapping subproblems, solving each subproblem just
once, and storing their solutions. It is particularly useful for optimization prob-
lems where the problem can be divided into simpler subproblems that are solved
independently and combined to form a solution to the original problem.

Dynamic Programming was first introduced by Richard Bellman in the 1950s
as part of his research in operations research and control theory. In this context,
the term “programming” does not relate to coding but refers to the process of
optimizing a series of decisions. Bellman chose the term ”dynamic program-
ming” to avoid confusion and political issues, as ”programming” was strongly
associated with computers at the time.

At its core, Dynamic Programming (DP) involves breaking down a problem
into smaller, more manageable subproblems and storing the solutions to these
subproblems for future use. This approach is particularly effective for problems
that exhibit two key properties: optimal substructure and overlapping subprob-
lems.

1. Optimal Substructure: A problem has optimal substructure if the best
solution to the overall problem can be constructed from the best solutions
to its smaller subproblems. This means that if you have the optimal solu-
tions for the smaller components of the problem, you can combine them
to find the best solution for the entire problem. This property allows
Dynamic Programming to build solutions incrementally, using previously
computed results to achieve the most efficient outcome.

Example: Shortest Path in a Grid

Imagine you need to find the shortest path from the top-left corner to
the bottom-right corner of a grid. You can only move right or down. Each
cell in the grid has a certain cost associated with entering it, and your
goal is to minimize the total cost of the path.



13.3. DYNAMIC PROGRAMMING APPROACH TO PROBLEM SOLVING247

Problem Breakdown:

(a) Smaller Subproblems: To find the shortest path to a particular
cell (i, j), you can look at the shortest paths to the cells immediately
above it (i − 1, j) and to the left of it (i, j − 1). The cost to reach
cell (i, j) will be the minimum of the costs to reach these neighboring
cells plus the cost of the current cell.

(b) Optimal Substructure: If you know the shortest paths to cells
(i − 1, j) and (i, j − 1), you can use these to determine the shortest
path to cell (i, j). The optimal path to cell (i, j) can be constructed
from the optimal paths to its neighboring cells.

How it Works:

• You start by solving the problem for the smallest subproblems (the
cells directly above and to the left).

• You then build up solutions incrementally, using the results of the
smaller subproblems to solve larger parts of the grid.

• Finally, you combine the results to find the shortest path to the
bottom-right corner of the grid.

This approach ensures that you are using the most efficient solutions to
smaller problems to construct the best solution for the entire grid.

2. Overlapping Subproblems: Many problems require solving the same
subproblems multiple times. Dynamic Programming improves efficiency
by storing the results of these subproblems in a table to avoid redun-
dant calculations. By caching these results, the algorithm reduces the
number of computations needed, leading to significant performance im-
provements.

R Dynamic programming breaks problems down into overlapping
subproblems, storing solutions to avoid redundant calculations.

Example: Fibonacci Sequence

In the Fibonacci sequence, each number is the sum of the two preced-
ing ones. For example, to find Fibonacci(5), you need the values of
Fibonacci(4) and Fibonacci(3). To compute Fibonacci(4), you need
Fibonacci(3) and Fibonacci(2). Notice that Fibonacci(3) is com-
puted multiple times when calculating different Fibonacci numbers.

Without Dynamic Programming:

• To compute Fibonacci(5), you might end up calculating Fibonacci(3)
twice.
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• This redundancy leads to a lot of repeated work.

With Dynamic Programming:

• You compute Fibonacci(3) once and store its result.
• When you need Fibonacci(3) again, you retrieve the stored result

instead of recalculating it.
• This caching of results avoids redundant calculations and speeds up

the process.

How it Works:

(a) Compute: Calculate the Fibonacci numbers and store them in an
array.

(b) Reuse: Whenever you need the value of a Fibonacci number that
has already been computed, look it up in the array instead of recal-
culating.

By storing results and reusing them, Dynamic Programming reduces the
number of calculations needed to solve the problem, leading to significant
performance improvements.

R By caching intermediate results, dynamic programming transforms
exponential time complexity into polynomial time.

13.3.1 Comparison with Other Problem-solving
Techniques

Dynamic Programming shares similarities with other problem-solving techniques
like Divide and Conquer and Greedy Algorithms, but it has unique character-
istics that set it apart:

Divide and Conquer: Both techniques break problems into smaller subprob-
lems. However, Divide and Conquer solves each subproblem independently,
often without considering if the same subproblems are solved multiple times.
In contrast, Dynamic Programming stores and reuses solutions to overlapping
subproblems, which improves performance by avoiding redundant calculations.

Greedy Algorithms: Greedy algorithms make a series of locally optimal
choices with the hope of finding the global optimum. They are typically sim-
pler to implement but may not always yield the best overall solution. Dynamic
Programming, on the other hand, guarantees an optimal solution by evaluating
all possible choices and storing the best solutions for each subproblem, ensuring
the most efficient overall result.



13.3. DYNAMIC PROGRAMMING APPROACH TO PROBLEM SOLVING249

13.3.2 Fundamental Principles of Dynamic Programming
In this section, we will explore the fundamental principles that make Dynamic
Programming an effective problem-solving technique, focusing on overlapping
subproblems, optimal substructure, and the two primary approaches: memoiza-
tion and tabulation.

Overlapping Subproblems: Dynamic Programming is particularly useful for
problems with overlapping subproblems. This means that when solving a larger
problem, you encounter smaller subproblems that are repeated multiple times.
Instead of recomputing these subproblems each time they are encountered, Dy-
namic Programming saves their solutions in a data structure, such as an array
or hash table. This avoids redundant calculations and significantly improves
efficiency.

For example, in a recursive approach to solving a problem, the same function
might be called multiple times with the same arguments. Without Dynamic Pro-
gramming, this leads to wasted time as the same subproblems are recalculated
repeatedly. By using Dynamic Programming, the solutions to these subprob-
lems are stored once computed, which optimizes overall algorithm efficiency.

Optimal Substructure: Another key principle of Dynamic Programming is
optimal substructure. This property means that an optimal solution to the
larger problem can be constructed from the optimal solutions to its smaller sub-
problems. In other words, if you can determine the best solution for smaller
problems, you can use these solutions to build the best solution for the entire
problem.

Optimal substructure is central to Dynamic Programming’s recursive nature.
By solving subproblems optimally and combining their solutions, you ensure
that the final solution is also optimal.

R Optimal substructure is the key to dynamic programming, where
the global solution can be constructed from optimal solutions of smaller
subproblems.

13.3.3 Approaches in Dynamic Programming
Dynamic Programming can be implemented using two main approaches: mem-
oization (top-down) and tabulation (bottom-up).

13.3.3.1 Memoization (Top-Down Approach)

Memoization involves solving the problem recursively and storing the results of
subproblems in a table (usually a dictionary or array). This way, each subprob-
lem is solved only once, and subsequent calls to the subproblem are served from
the stored results.
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Steps:

1. Identify the base cases.

2. Define the recursive relation.

3. Store the results of subproblems in a table.

4. Use the stored results to solve larger subproblems.

Example: Fibonacci sequence using memoization

def fib(n, memo={}):
if n in memo:

return memo[n]
if n <= 1:

return n
memo[n] = fib(n-1, memo) + fib(n-2, memo)
return memo[n]

Code Explanation: Fibonacci Sequence Using Memoization:

The given code defines a function fib that calculates the n-th Fibonacci num-
ber using a technique called memoization. Memoization is a method used to
optimize recursive algorithms by storing the results of expensive function calls
and reusing them when the same inputs occur again.

Here is a detailed explanation of each part of the code:

def fib(n, memo={}):

• The function fib takes two arguments:

– n: The position in the Fibonacci sequence for which we want to find
the Fibonacci number.

– memo: A dictionary used to store previously computed Fibonacci
numbers. It defaults to an empty dictionary if not provided.

if n in memo:
return memo[n]

– This line checks if the Fibonacci number for the given n has already
been computed and stored in the memo dictionary.
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– If it has, the function immediately returns the stored value, avoiding
redundant calculations.

if n <= 1:
return n

– This line handles the base cases of the Fibonacci sequence.
∗ If n is 0 or 1, the function returns n because the Fibonacci
sequence is defined as fib(0) = 0 and fib(1) = 1.

memo[n] = fib(n-1, memo) + fib(n-2, memo)

– This line computes the Fibonacci number for n by recursively calling
fib for n-1 and n-2.

– The results of these recursive calls are added together to get the
Fibonacci number for n.

– The computed Fibonacci number is then stored in the memo dictio-
nary to avoid redundant calculations in future calls.

return memo[n]

– This line returns the Fibonacci number for n that was just computed
and stored in the memo dictionary.

The fib function leverages memoization to optimize the calculation of Fibonacci
numbers by storing the results of previously computed numbers in a dictionary.
This approach significantly reduces the time complexity of the algorithm from
exponential to linear by avoiding redundant calculations.

Memoization is often easier to implement and understand. It starts with
the original problem and solves subproblems as needed. However, it may have
overhead due to recursive function calls and may not be as efficient for some
problems.

13.3.3.2 Tabulation (Bottom-Up Approach)

Tabulation involves solving the problem iteratively and filling up a table (usu-
ally an array) in a bottom-up manner. This approach starts with the smallest
subproblems and uses their solutions to construct solutions to larger subprob-
lems.

Steps:
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1. Identify the base cases.

2. Define the table to store solutions to subproblems.

3. Fill the table iteratively using the recursive relation.

4. Extract the solution to the original problem from the table.

Example: Fibonacci sequence using tabulation

def fib(n):
if n <= 1:

return n
dp = [0] * (n + 1)
dp[1] = 1
for i in range(2, n + 1):

dp[i] = dp[i-1] + dp[i-2]
return dp[n]

Code Explanation: Fibonacci Sequence Using Table:

The given code defines a function fib that calculates the n-th Fibonacci number
using a tabular approach. Dynamic programming is a method for solving prob-
lems by breaking them down into simpler subproblems and storing the solutions
to these subproblems in a table to avoid redundant calculations.

Here is a detailed explanation of each part of the code:

def fib(n):

– The function fib takes a single argument n, which represents the
position in the Fibonacci sequence for which we want to find the
Fibonacci number.

if n <= 1:
return n

– This line handles the base cases of the Fibonacci sequence.
∗ If n is 0 or 1, the function returns n because the Fibonacci
sequence is defined as fib(0) = 0 and fib(1) = 1.

dp = [0] * (n + 1)
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– This line initializes a list dp of length n+1 with all elements set to
0.

– The list dp will be used to store the Fibonacci numbers for each
position from 0 to n.

dp[1] = 1

– This line sets the second element of the list dp to 1, which corre-
sponds to fib(1) = 1.

for i in range(2, n + 1):
dp[i] = dp[i-1] + dp[i-2]

– This loop iterates over the range from 2 to n (inclusive).
– For each i in this range, the Fibonacci number at position i is calcu-

lated by adding the Fibonacci numbers at positions i-1 and i-2.
– The result is stored in dp[i].

return dp[n]

– This line returns the Fibonacci number for the given n, which is
stored in dp[n].

This approach reduces the time complexity and the space complexity, making
it much more efficient than the naive recursive approach.

Tabulation tends to be more memory-efficient and can be faster than mem-
oization due to its iterative nature. However, it requires careful planning to set
up the data structures and dependencies correctly.

R The core strength of dynamic programming lies in turning recursive
problems into iterative solutions by reusing past work.

13.3.4 Solving Computational Problems Using Dynamic
Programming Approach

Here is a step-by-step guide on how to solve computational problems using the
dynamic programming approach:

1. Identify the Subproblems: Break down the problem into smaller sub-
problems. Determine what the subproblems are and how they can be
combined to solve the original problem.
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2. Define the Recurrence Relation: Express the solution to the problem
in terms of the solutions to smaller subproblems. This usually involves
finding a recursive formula that relates the solution of a problem to the
solutions of its subproblems.

3. Choose a Memoization or Tabulation Strategy: Decide whether to
use a top-down approach with memoization or a bottom-up approach with
tabulation.

• Memoization (Top-Down): Solve the problem recursively and
store the results of subproblems in a table (or dictionary) to avoid
redundant computations.

• Tabulation (Bottom-Up): Solve the problem iteratively, starting
with the smallest subproblems and building up the solution to the
original problem.

4. Implement the Solution: Write the code to implement the dynamic
programming approach, making sure to handle base cases and use the
table to store and retrieve the results of subproblems.

5. Optimize Space Complexity (if necessary): Sometimes, it is possible
to optimize space complexity by using less memory. For example, if only
a few previous states are needed to compute the current state, you can
reduce the size of the table.

Let us see how we can apply the dynamic programming approach to solve a
computational problem.

13.3.4.1 Problem-1 (The Knapsack Problem)

The knapsack problem is a classical example of a problem that can be solved
using dynamic programming. The problem is defined as follows:

Given weights and values of n items, put these items in a knapsack of capacity
W to get the maximum total value in the knapsack. Each item can only be
taken once.

Consider the following example:

• Capacity of the knapsack W = 50

• Number of items n = 3

• Weights of the items: w = [10, 20, 30]

• Values of the items: v = [60, 100, 120]

We want to find the maximum value we can carry in the knapsack. For this
example, the maximum value we can carry in the knapsack of capacity 50 is
220.
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Now we discuss how to apply the dynamic programming approach to solve
the Knapsack problem.

Step-by-Step Solution

1. Define the Subproblems: The subproblem in this case is finding the
maximum value for a given knapsack capacity w using the first i items.
Let us define dp[i][w] as the maximum value that can be obtained with
a knapsack capacity w using the first i items.

2. Recurrence Relation: For each item i, you have two choices:

• Do not include the item i in the knapsack: The maximum value
is the same as without this item, which is dp[i-1][w].

• Include the item i in the knapsack: The maximum value is the
value of this item plus the maximum value of the remaining capacity,
which is values[i-1] + dp[i-1][w-weights[i-1]] (only if weights[i-
1] ≤ w).
The recurrence relation is:

dp[i][w] = max{dp[i− 1][w],values[i− 1] + dp[i− 1][w −weights[i− 1]}

3. Base Case: If there are no items or the capacity is zero, the maximum
value is zero:

dp[i][0] = 0 for all i

dp[0][w] = 0 for all w

4. Tabulation: We use a 2D array dp where dp[i][w] represents the maxi-
mum value obtainable using the first i items and capacity w.

Here is the dynamic programming algorithm solution in Python:

def knapsack(W, weights, values, n):
""" Create a 2D array to store the maximum value for each
subproblem. """
dp = [[0 for _ in range(W + 1)] for _ in range(n + 1)]

# Build the table in a bottom-up manner
for i in range(n + 1):

for w in range(W + 1):
if i == 0 or w == 0:

dp[i][w] = 0
elif weights[i-1] <= w:

dp[i][w] = max(values[i-1] +
dp[i-1][w-weights[i-1]], dp[i-1][w])

else:
dp[i][w] = dp[i-1][w]
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""" The maximum value that can be obtained with the given
capacity is in dp[n][W] """

return dp[n][W]

# Example usage:
values = [60, 100, 120]
weights = [10, 20, 30]
W = 50
n = len(values)
print(knapsack(W, weights, values, n)) # Output: 220

Explanation:

1. Initialization: We initialize a 2D list dp with dimensions (n+1) x
(W+1), where dp[i][w] represents the maximum value achievable with
the first i items and a knapsack capacity w. Initially, all values are set to
0.

2. Filling the DP Table:

• We iterate through each item i (from 0 to n).
• For each item, we iterate through each capacity w (from 0 to W).
• If the current item can be included in the knapsack (weights[i-1]

≤w), we calculate the maximum value by either including or exclud-
ing the item.

• If the current item cannot be included, the maximum value is the
same as without this item.

3. Result: The maximum value obtainable with the given knapsack capacity
is stored in dp[n][W].

Let us walk through an example with values = [60, 100, 120], weights =
[10, 20, 30], and W = 50.

• Initialize the dp table with dimensions 4 × 51 (all values set to 0).

• Iterate through each item and each capacity, updating the dp table ac-
cording to the recurrence relation.

• The final dp table will contain the maximum values for each subproblem.

• The value in dp[3][50] will be the maximum value obtainable, which is
220.

The time complexity of the knapsack algorithm is ((n + 1) × (W+1), where n
is the number of items and W is the maximum weight capacity of the knapsack.
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This is because we use a 2D array dp with dimensions (n+1)× (W+1), and
we fill this table by iterating through each item (from 0 to n) and each possible
weight (from 0 to W). The space complexity of the algorithm is also (n + 1)
× (W + 1) due to the 2D array dp used to store the maximum value for each
subproblem.

By using dynamic programming, we reduce the exponential time complexity
of the naive recursive solution to a polynomial (pseudo-polynomial to be more
correct - The dynamic programming solution is indeed linear in the value of
W, but exponential in the length of W) time complexity, making it feasible
to solve larger instances of the problem. Also, by following these steps and
principles, you can effectively use the dynamic programming approach to solve
the knapsack problem and other similar computational problems.

13.3.5 Examples of Dynamic Programming
In this section, we will examine some classic examples of problems that can
be effectively addressed using Dynamic Programming. These examples provide
foundational insights into how this powerful problem-solving technique is ap-
plied in practice.

Longest Common Subsequence (LCS): The Longest Common Subsequence
(LCS) problem is a fundamental string comparison challenge that identifies the
longest sequence common to two or more strings. Unlike a substring, a subse-
quence maintains the order of characters but does not need to be contiguous.

Brute-force solutions to the LCS problem involve examining all possible
subsequences to determine the longest common one, which is computationally
expensive and impractical for longer strings due to its exponential time com-
plexity. Dynamic Programming offers a more efficient approach by dividing the
problem into smaller subproblems and using memoization or tabulation to store
intermediate results.

Rod Cutting Problem: The Rod Cutting problem is a classic optimization
problem, relevant in fields such as manufacturing and finance. Given a rod
of length n and a price table for various lengths, the goal is to determine the
maximum revenue achievable by cutting the rod into pieces and selling them.

A brute-force approach involves evaluating all possible cutting combinations
and calculating the revenue for each, which becomes infeasible for longer rods
due to its high complexity. Dynamic Programming addresses this issue by break-
ing the problem into smaller subproblems and using memoization or tabulation
to find the optimal solution efficiently.

R Dynamic programming shines in problems where brute force would
be inefficient, allowing us to solve complex problems more systematically.

These classic examples showcase the effectiveness of Dynamic Programming. By
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leveraging the concepts of overlapping subproblems and optimal substructure,
Dynamic Programming provides efficient solutions to problems that would oth-
erwise be computationally prohibitive. Its practical applications extend across
various fields, making it an invaluable technique for programmers.

13.3.6 Advantages and Disadvantages of the Dynamic
Programming Approach

Advantages of the Dynamic Programming Approach

1. Efficiency: DP reduces the time complexity of problems with overlapping
subproblems by storing solutions to subproblems and reusing them.

2. Optimal Solutions: DP ensures that the solution to the problem is opti-
mal by solving each subproblem optimally and combining their solutions.

3. Versatility: DP can be applied to a wide range of problems across dif-
ferent domains.

Disadvantages of the Dynamic Programming Approach

1. Space Complexity: DP often requires additional memory to store the
results of subproblems, which can be a limitation for problems with a large
number of subproblems.

2. Complexity of Formulation: Developing a DP solution requires a deep
understanding of the problem’s structure and properties, which can be
challenging.

3. Overhead of Table Management: Managing and maintaining the DP
table or memoization structure can add overhead to the algorithm.

R Dynamic programming is not just a technique; it is a framework for
efficiently solving problems with a recursive structure.

Dynamic programming is a powerful technique for solving problems with
overlapping subproblems and optimal substructure. By breaking down problems
into simpler subproblems and storing their solutions, DP achieves efficiency and
guarantees optimal solutions. Despite its complexity and memory requirements,
DP’s versatility and effectiveness make it an essential tool in algorithm design.

13.4 Greedy Approach to Problem Solving
In the last two sections, we explored dynamic programming and divide-and-
conquer methods. All these approaches aim to simplify complex problems by
breaking them into smaller, more manageable subproblems. Divide-and-conquer
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does this by splitting the problem into independent parts and solving each sepa-
rately. Dynamic programming, on the other hand, involves storing and reusing
solutions to overlapping subproblems to avoid redundant work.

The greedy approach, by contrast, is often the most intuitive method in al-
gorithm design. When faced with a problem that requires a series of decisions, a
greedy algorithm makes the ”best” choice available at each step, focusing solely
on the immediate situation without considering future consequences. This ap-
proach simplifies the problem by reducing it to a series of smaller subproblems,
each requiring fewer decisions. For example, if you are navigating Thiruvanan-
thapuram City and need to head northeast, moving north or east at each step
will consistently reduce your distance to the destination. However, in more com-
plex scenarios, such as driving where roads might be one-way, a purely greedy
strategy might not always yield the best outcome. In such cases, planning ahead
is essential to avoid obstacles and ensure a successful route.

We often deal with problems where the solution involves a sequence of de-
cisions or steps that must be taken to reach the optimal outcome. The greedy
approach is a strategy that finds a solution by making the locally optimal choice
at each step, based on the best available option at that particular stage. At a
fundamental level, it shares a similar philosophy with dynamic programming
and divide-and-conquer, which involves breaking down a large problem into
smaller, more manageable components that are easier to solve.

Whether the greedy approach is the best method depends on the problem at
hand. In some cases, it might lead to an approximate but not entirely optimal
solution. For these situations, dynamic programming or brute-force methods
might provide a more accurate result. However, when the greedy approach is
appropriate, it typically offers faster execution times compared to dynamic pro-
gramming or brute-force methods.

Example: Coin Changing Problem

Given a set of coin denominations, the task is to determine the minimum num-
ber of coins needed to make up a specified amount of money. One approach to
solving this problem is to use a greedy algorithm, which works by repeatedly
selecting the largest denomination that does not exceed the remaining amount
of money. This process continues until the entire amount is covered.

While this greedy algorithm can provide the optimal number of coins for
some sets of denominations, it does not always guarantee the minimum number
of coins for all cases. For instance, with coin values of 1, 2, and 5, the greedy
approach yields the optimal solution for any amount. However, with denomi-
nations of 1, 3, and 4, the greedy algorithm can produce a suboptimal result.
For example, to make 6 units of money, the greedy method would use coins of
values 4, 1, and 1, totaling three coins. The optimal solution, however, would
use only two coins of values 3 and 3.

Greedy Solution
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1. Sort the coin denominations in descending order.

2. Start with the highest denomination and take as many coins of that de-
nomination as possible without exceeding the amount.

3. Repeat the process with the next highest denomination until the amount
is made up.

Example

Suppose you have coin denominations of 1, 5, 10, and 25 Rupees, and you
need to make change for 63 Rupees.

1. Take two 25-Rupee coins (63 - 50 = 13 Rupees left).

2. Take one 10-Rupee coin (13 - 10 = 3 Rupees left).

3. Take three 1-Rupee coins (3 - 3 = 0 Rupee left).

Thus, the minimum number of coins needed is six (two 25-Rupee coins, one
10-Rupee coin, and three 1-Rupee coins).

R The greedy approach makes local choices at each step, aiming for
immediate benefit in hopes of finding the global optimum.

Key Characteristics of the Greedy Approach

1. Local Optimization: At each step, the algorithm makes the best pos-
sible choice without considering the overall problem. This choice is made
with the hope that these local optimal decisions will lead to a globally
optimal solution.

2. Irrevocable Decisions: Once a choice is made, it cannot be changed.
The algorithm proceeds to the next step, making another locally optimal
choice.

3. Efficiency: Greedy algorithms are typically easy to implement and run
quickly, as they make decisions based on local information and do not
need to consider all possible solutions.

13.4.1 Motivations for the Greedy Approach
The Greedy Approach is motivated by several key factors that make it a desir-
able strategy for problem-solving. Some are as follows:

1. Simplicity and Ease of Implementation:

• Straightforward Logic: Greedy algorithms make the most optimal
choice at each step based on local information, making them easy to
understand and implement.
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• Minimal Requirements: These algorithms do not require com-
plex data structures or extensive bookkeeping, reducing the overall
implementation complexity.

2. Efficiency in Time and Space:

• Fast Execution: Greedy algorithms typically run in linear or poly-
nomial time, which is efficient for large input sizes.

• Low Memory Usage: Since they do not need to store large in-
termediate results, they have low memory overhead, making them
suitable for memory-constrained environments.

3. Optimal Solutions for Specific Problems:

• Greedy-Choice Property: Problems with this property allow local
optimal choices to lead to a global optimum.

• Optimal Substructure: Problems where an optimal solution to the
whole problem can be constructed efficiently from optimal solutions
to its sub-problems.

4. Real-World Applicability:

• Practical Applications: Greedy algorithms are useful in many
real-world scenarios like scheduling, network routing, and resource
allocation.

• Quick, Near-Optimal Solutions: In situations where an exact
solution is not necessary, greedy algorithms provide quick and rea-
sonably good solutions.

R Greedy algorithms work when a problem exhibits the greedy choice
property, where local optima lead to global optima.

13.4.2 Characteristics of the Greedy Algorithm
1. Local Optimization:

• Greedy algorithms make the best possible choice at each step by
considering only the current problem state without regard to the
overall problem. This local choice is made with the hope that these
local optimal choices will lead to a globally optimal solution.

2. Irrevocable Decisions:

• Once a choice is made, it cannot be changed. This means that the
algorithm does not backtrack or reconsider previous decisions.

3. Problem-Specific Heuristics:



262CHAPTER 13. COMPUTATIONAL APPROACHES TO PROBLEM-SOLVING

• Greedy algorithms often rely on problem-specific heuristics to guide
their decision-making process. These heuristics are designed based
on the properties of the problem.

4. Optimality:

• Greedy algorithms are guaranteed to produce optimal solutions for
some problems (e.g., Coin change, Huffman coding, Kruskal’s algo-
rithm for Minimum Spanning Tree) but not for some other problems.
The success of a greedy algorithm depends on the specific character-
istics of the problem.

5. Efficiency:

• Greedy algorithms are generally very efficient regarding both time
and space complexity because they make decisions based on local
information and do not need to explore all possible solutions.

R By choosing the best option at every stage, greedy algorithms often
provide efficient and simple solutions to complex problems.

13.4.3 Solving Computational Problems Using Greedy
Approach

To solve computational problems using the Greedy Approach, identify if the
problem can be decomposed into sub-problems with an optimal substructure
and ensure it possesses the greedy-choice property. Define a strategy to make
the best local choice at each step, ensuring these local decisions lead to a globally
optimal solution. Design the algorithm by sorting the input data if needed and
iterating through it, making the optimal local choice at each iteration while
keeping track of the solution being constructed. Finally, analyze the algorithm’s
efficiency and correctness by testing it on various cases, including edge cases.

Let us see how we can apply the greedy approach to solve a computational
problem.

13.4.3.1 Problem-1 (Task Completion Problem)

Given an array of positive integers each indicating the completion time for a
task, find the maximum number of tasks that can be completed in the limited
amount of time that you have.

In the problem of finding the maximum number of tasks that can be com-
pleted within a limited amount of time, the optimal substructure can be iden-
tified by recognizing how smaller sub-problems relate to the overall problem.
Here’s how it works:
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1. Break Down the Problem: Consider a subset of the tasks and deter-
mine the optimal solution for this subset. For example, given a certain
time limit, find the maximum number of tasks that can be completed from
the first k tasks in the array.

2. Extend to Larger Sub-problems: Extend the solution from smaller
sub-problems to larger ones. If you can solve the problem for k tasks, you
can then consider the (k+1)th task and decide if including this task leads
to a better solution under the given time constraint.

3. Recursive Nature: The optimal solution for the first k tasks should help
in finding the optimal solution for the first (k + 1) tasks. This recursive
approach ensures that the overall solution is built from the solutions of
smaller sub-problems.

4. Greedy Choice: At each step, make the greedy choice of selecting the
task with the shortest completion time that fits within the remaining
available time. This choice reduces the problem size and leads to a solution
that maximizes the number of tasks completed.

By iteratively applying this approach and making the best local choices (se-
lecting the shortest tasks first), you can construct a globally optimal solution
from optimal solutions to these smaller sub-problems, demonstrating the opti-
mal substructure property.

R Greedy algorithms excel in problems with optimal substructure, where
the problem can be broken down into smaller, solvable components.

To solve the problem of finding the maximum number of tasks that can be
completed in a limited amount of time using a greedy algorithm, you can follow
these steps:

1. Sort the tasks by their completion times in ascending order: This
ensures that you always consider the shortest task that can fit into the
remaining time, maximizing the number of tasks completed.

2. Iterate through the sorted list of tasks and keep track of the
total time and count of tasks completed: For each task, if adding
the task’s completion time to the total time does not exceed the available
time, add the task to the count and update the total time.

Here is the greedy algorithm solution in Python:

def max_tasks(completion_times, available_time):
""" Step 1: Sort the tasks by their completion times in
ascending order. """

completion_times.sort()
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total_time = 0
task_count = 0

""" Step 2: Iterate through the sorted list of tasks for
time in completion_times:

If adding the task's completion time does not exceed
the available time"""

for time in completion_times:
if total_time + time <= available_time:

total_time += time
task_count += 1

else:
break # No more tasks can be completed in the

# available time

return task_count

# Example usage
completion_times = [2, 3, 1, 4, 6]
available_time = 8
print(f"Maximum number of tasks that can be completed:

{max_tasks(completion_times, available_time)}")
#{max_tasks(completion_times, available_time)}

Explanation:

1. Sorting: The list of completion times is sorted in ascending order. This
step ensures that we always consider the shortest tasks first, which helps
in maximizing the number of tasks that can be completed within the given
time.

2. Iterating through sorted tasks: The algorithm iterates through the
sorted list and maintains two variables:

• total_time: The cumulative time of tasks completed so far.
• task_count: The count of tasks completed.

3. Checking time constraint: For each task, it checks if adding the task’s
completion time to total_time exceeds available_time. If it does not
exceed, the task is added to the count, and total_time is updated. If it
exceeds, the loop breaks because no more tasks can be completed without
exceeding the available time.

Example
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Consider the example usage with completion_times = [2, 3, 1, 4, 6] and
available_time = 8:

• After sorting: [1, 2, 3, 4, 6]

• Iterating:

– Add task with time 1: total_time = 1, task_count = 1
– Add task with time 2: total_time = 3, task_count = 2
– Add task with time 3: total_time = 6, task_count = 3
– Next task with time 4 would exceed available_time, so the loop

breaks.

The maximum number of tasks that can be completed in 8 units of time is 3.

13.4.4 Greedy Algorithms vs. Dynamic Programming
Greedy Algorithms:

• Approach: Make the best possible choice at each step based on local
information, without reconsidering previous decisions.

• Decision Process: Makes decisions sequentially and irrevocably.
• Optimality: Guaranteed to produce optimal solutions only for cer-

tain problems with the greedy-choice property and optimal substruc-
ture.

• Efficiency: Typically faster and uses less memory due to the lack of
extensive bookkeeping.

• Example Problems: Coin Change Problem (specific denomina-
tions), Kruskal’s Algorithm for Minimum Spanning Tree, Huffman
Coding.

Dynamic Programming:

• Approach: Breaks down a problem into overlapping sub-problems
and solves each sub-problem only once, storing the results to avoid
redundant computations.

• Decision Process: Considers all possible decisions and combines
them to form an optimal solution, often using a bottom-up or top-
down approach.

• Optimality: Always produces an optimal solution by considering
all possible ways of solving sub-problems and combining them.

• Efficiency: Can be slower and use more memory due to storing
results of all sub-problems (memoization or tabulation).

• Example Problems: Fibonacci Sequence, Longest Common Sub-
sequence, Knapsack Problem.
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13.4.5 Advantages and Disadvantages of the Greedy
Approach

Advantages of the Greedy Approach

1. Simplicity: Greedy algorithms are generally easy to understand and im-
plement.

2. Speed: These algorithms typically run quickly, making them suitable for
large input sizes.

3. Optimal for Certain Problems: For some problems, like the Coin
Change Problem with certain denominations, greedy algorithms provide
an optimal solution.

Disadvantages of the Greedy Approach

1. Suboptimal Solutions: Greedy algorithms do not always produce the
optimal solution for every problem. They are most effective when the
problem has the greedy-choice property, meaning a global optimum can
be reached by making local optimal choices.

2. Irrevocable Decisions: Once a choice is made, it cannot be changed,
which may lead to a suboptimal solution in some cases.

3. Lack of Backtracking: Greedy algorithms do not explore all possible
solutions or backtracks, which means they can miss better solutions.

R Although greedy algorithms may not always find the perfect solution,
they often provide fast and close-to-optimal answers.

The greedy approach is a powerful and efficient problem-solving strategy that
works well for certain types of optimization problems. Its simplicity and speed
make it a valuable tool in the algorithmic toolkit. However, it is essential to
analyze whether the problem at hand has the greedy-choice property to en-
sure that the greedy algorithm will produce an optimal solution. For problems
where the greedy approach does not guarantee optimality, other methods such
as dynamic programming or backtracking may be more appropriate.

13.5 Randomized Approach to Problem Solving
In the domain of computational problem solving, randomized approaches us-
ing simulations offer a dynamic and accessible method for tackling complex
challenges. For example, consider the task of estimating the area of a circle
inscribed within a square. One way to approach this is by randomly placing
points throughout the square and determining how many of those points fall
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inside the circle. By calculating the ratio of points that land inside the circle
to the total number of points placed, we can approximate the proportion of the
circle’s area relative to the square’s area. This proportion, when multiplied by
the area of the square, provides an estimate of the circle’s area. This example
illustrates how simulations can model geometric problems and provide insights
that might be challenging to achieve through traditional deterministic methods.

Simulations leverage randomness to model and analyze problems, provid-
ing insights that might be difficult to achieve through traditional deterministic
approaches. These methods allow us to explore the behavior of systems under
uncertainty, estimate performance metrics, and derive practical solutions for a
variety of problems. This section introduces the principles of simulation within
the context of randomized problem-solving, using classical examples to illustrate
their practical applications.

Consider a classic example known as the ”birthday problem”. Imagine a
group of students in a classroom, and you want to determine the probabil-
ity that at least two students share the same birthday. The exact calculation
involves combinatorial mathematics, but a simulation offers a more intuitive
way to understand the problem. By randomly assigning birthdays to students
across many simulated classrooms and recording the number of times at least
two students share a birthday, we can empirically estimate the probability. This
approach not only simplifies the analysis but also provides a hands-on under-
standing of probabilistic concepts.

Another illustrative example is the ”random walk on a grid”, where a person
starts at a fixed point on a grid and takes steps in random directions. The goal
is to determine the expected time it takes for the person to return to the starting
point. Simulating this random walk multiple times allows us to estimate the
average return time, offering insights into the behavior of random processes.
This example demonstrates how simulations can model stochastic systems and
provide valuable data about their dynamics.

Another example is the ”random coin flips” problem, where we want to
determine the probability of getting a certain number of heads in a series of coin
flips. For instance, simulating 100 coin flips repeatedly and counting the number
of heads in each simulation allows us to estimate the probability distribution
of getting a specific number of heads. This example highlights how simulations
can be used to analyze probabilistic events and gain empirical insights into the
behavior of random processes

These examples highlight the power of using random processes to address
computational problems where traditional methods might be complex or imprac-
tical. By incorporating randomness, we can explore a wide range of scenarios,
estimate outcomes, and gain insights into the behavior of systems with uncer-
tain or probabilistic elements. This approach provides a flexible and accessible
way to tackle problems that may be challenging to solve using deterministic
methods alone.

This section will delve into various problems and applications where ran-
domness plays a crucial role in solving computational challenges. By examining
simple yet illustrative examples, we will demonstrate how random processes can
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enhance our problem-solving toolkit and provide valuable insights into complex
systems.

R Randomized approach introduces randomness into the decision-making
process, often yielding simple and efficient solutions to complex problems.

13.5.1 Motivations for the Randomized Approach
The randomized approach to problem-solving offers several compelling advan-
tages that can make it a valuable tool in both theoretical and practical appli-
cations. Some of them are as follows:

1. Complexity Reduction: A randomized approach often simplifies com-
plex problems by introducing probabilistic choices that lead to efficient
solutions. For example, imagine you are organizing a community health
screening event in a large city. You need to decide on the number of
screening stations and their locations to maximize coverage and efficiency.
Instead of analyzing every possible combination of locations and station
numbers—which would be highly complex and time-consuming - you could
randomly select several potential locations and test their effectiveness. By
evaluating a sample of these random setups, you can identify patterns or
clusters of locations that work well. This method simplifies the complex
problem of optimizing station placement by reducing the number of sce-
narios you need to explore in detail.

2. Versatility: Applicable across diverse domains, from combinatorial opti-
mization to stochastic simulations, where deterministic solutions may be
impractical or infeasible. For example, consider a company that is devel-
oping a new app and wants to test its usability. Testing every feature with
every possible user scenario could be impractical. Instead, the company
could randomly select a diverse group of users and a subset of features to
test. By analyzing how this sample of users interacts with the app and
identifying any issues they encounter, the company can gain insights that
are broadly applicable to all users. This approach allows the company to
obtain useful feedback and make improvements without needing to test
every possible combination of user and feature.

3. Performance: In certain scenarios, a randomized approach can offer sig-
nificant performance improvements over deterministic counterparts, par-
ticularly when dealing with large datasets or complex systems For exam-
ple, imagine a large library that wants to estimate how often books are
checked out. Instead of tracking every single book’s check-out frequency—
which would be a massive task—the library staff could randomly sample
a selection of books from different genres and record their check-out rates
over a period of time. By analyzing this sample, they can estimate the
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average check-out frequency for the entire collection. This approach im-
proves performance in terms of both time and resources, allowing the
library to make informed decisions about which books to keep, acquire, or
remove based on practical data from the sampled books.

R The power of randomness lies in its ability to break symmetries and
explore solution spaces that deterministic methods may overlook.

13.5.2 Characteristics of Randomized Approach
Randomized approaches, which incorporate elements of randomness into their
decision-making processes, possess distinct characteristics that differentiate them
from deterministic methods. Some of them are as follows:

1. Probabilistic Choices: A randomized approach makes decisions based
on random sampling or probabilistic events, leading to variable but statis-
tically predictable outcomes. For instance, consider a company deciding
where to place new vending machines in a large office building. Instead of
assessing every possible location in detail, the company could randomly
select a few potential spots, test their performance, and use this data to
make a final decision. Although the locations chosen may vary each time
the process is conducted, the overall approach helps identify the most
effective spots based on statistical analysis of the sampled data.

2. Efficiency: They often achieve efficiency by sacrificing deterministic guar-
antees for probabilistic correctness, optimizing performance in scenarios
where exhaustive computation is impractical. For instance, suppose you
need to determine the most popular menu items in a large restaurant chain.
Instead of surveying every customer, which would be time-consuming and
expensive, you might randomly select a subset of customers and analyze
their preferences. Although this method does not guarantee that you will
capture every preference perfectly, it provides a practical and efficient way
to understand overall trends without needing to gather data from every
single customer.

3. Complexity Analysis: Evaluating the performance of randomized ap-
proaches involves analyzing their average-case behavior or expected out-
comes over multiple iterations, rather than deterministic worst-case sce-
narios. For example, if you are estimating the average time it takes for
customers to complete a purchase at an online store, you might randomly
sample customer transactions over a period of time. Instead of focusing
on the longest possible wait time, you analyze how the average wait time
behaves across many transactions. This approach provides a practical
understanding of performance under typical conditions, rather than the
extremes, offering a more balanced view of how the system performs in
real-world scenarios.



270CHAPTER 13. COMPUTATIONAL APPROACHES TO PROBLEM-SOLVING

Overall, the characteristics of randomized approaches—probabilistic choices, ef-
ficiency, and average-case complexity analysis—highlight their adaptability and
practical advantages. These features make them a powerful tool for tackling
complex problems where deterministic methods may fall short, offering a bal-
ance between performance and reliability in a wide range of computational sce-
narios.

R Randomized approaches balance simplicity and performance, trading
deterministic precision for probabilistic guarantees of correctness.

13.5.3 Randomized Approach vs Deterministic Methods
Randomized approaches and deterministic methods each offer unique advan-
tages and are suited to different types of problems. Randomized methods in-
corporate elements of chance, which can simplify complex issues and provide
efficient solutions when dealing with large or variable datasets. For example,
consider a company that wants to estimate customer satisfaction levels across a
vast number of branches. Instead of surveying every customer at each branch,
the company could randomly select a few branches and survey a sample of
customers from those locations. This approach provides a statistically valid
estimate of overall satisfaction while avoiding the need for exhaustive data col-
lection.

In contrast, deterministic methods are based on predictable, fixed processes
and deliver consistent results each time they are applied. For instance, if you
need to calculate the total cost of items in a shopping cart, you would use
a deterministic approach where each item’s price is added together to get an
exact total. This method ensures accuracy and repeatability but may be less
adaptable when dealing with uncertainty or incomplete data, such as predicting
future sales based on historical trends.

Randomized approaches are especially beneficial in scenarios where process-
ing or analyzing every possible option is impractical. For instance, if a researcher
wants to estimate the average time people spend exercising each week, they
might use randomized surveys to gather data from a representative sample of
individuals rather than interviewing everyone. This method allows for efficient
data collection and analysis, offering insights into exercise habits without the
need for comprehensive surveys of every individual.

On the other hand, deterministic methods are ideal for situations where pre-
cision and reliability are essential. For example, when designing a new piece of
machinery, engineers use deterministic methods to perform precise calculations
to ensure the machinery operates safely and efficiently. These methods pro-
vide exact and consistent results, which are crucial for meeting stringent safety
and performance standards. The choice between randomized and deterministic
methods depends on the nature of the problem, including the need for accuracy,
efficiency, and the ability to handle variability and uncertainty.
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13.5.4 Solving Computational Problems Using
Randomization

Having discussed the motivation and characteristics of randomized algorithms,
let us look at how to solve computational problems using randomization. To
get an idea of how to solve computational problems using randomization, let us
start with the problem of estimating the value of Pi (π).

A common randomized approach to estimate the value of Pi (π) is the Monte
Carlo method. This method involves simulating random points in a square that
contains a quarter circle and calculating the ratio of points that fall inside the
quarter circle to the total number of points.

Monte Carlo Method to Estimate π

1. Generate random points within a unit square (1× 1).

2. Count how many points fall inside a quarter circle of radius 1.

3. The ratio of points inside the quarter circle to the total points approxi-
mates the area of the quarter circle (π4 ).

4. Multiply this ratio by 4 to estimate π.

Here is a Python code to estimate π using the Monte Carlo method:

import random

def estimate_pi(num_samples):
inside_circle = 0

for _ in range(num_samples):
x = random.random()
y = random.random()
if x**2 + y**2 <= 1:

inside_circle += 1

pi_estimate = (inside_circle / num_samples) * 4
return pi_estimate

# Example usage:
num_samples = 1000000 # Number of random points to generate
pi_estimate = estimate_pi(num_samples)
print(f"Estimated value of pi with {num_samples} samples:

{pi_estimate}")

Explanation:

1. Random Points Generation:
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• random.random(): Generates a random floating-point number be-
tween 0 and 1. These numbers represent the x and y coordinates of
points in a unit square.

2. Check Points Inside the Circle:

• x**2 + y**2 <= 1: Checks if the point (x, y) lies within the
quarter circle of radius 1.

3. Calculate π:

• inside_circle/num_samples gives the fraction of points that lie
inside the quarter circle.

• Multiplying this fraction by 4 gives an estimate of π because the area
of the quarter circle is π

4 .

Running the above code with a large number of samples will provide an estimate
of π. Here is an example output:

Estimated value of pi with 1000000 samples: 3.141592

As you increase the number of samples, the estimate becomes more accurate.
This demonstrates the power of the Monte Carlo method in approximating
mathematical constants through randomized simulations.

R By leveraging randomness, we can simplify the analysis of algorithms,
often focusing on expected performance rather than worst-case scenarios.

We look at two more problems - The coupon problem and The Hat
problem - in depth that will reinforce the randomized approach to problem-
solving.

13.5.4.1 Problem-1 (Coupon Problem)

A company selling jeans gives a coupon for each pair of jeans. There are n
different coupons. Collecting n different coupons would give you free jeans.
How many jeans do you expect to buy before getting a free one?

Let us start with an algorithmic solution in plain English to determine how
many pairs of jeans you might need to buy before collecting all n different
coupons and getting a free pair of jeans:

Algorithmic Solution:

1. Initialize Variables:

• Total Jeans Bought: Start with a counter set to zero to track how
many pairs of jeans you have bought.
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• Coupons Collected: Use a set to keep track of the different types
of coupons you have received.

• Number of Coupons: The total number of different coupon types
is n.

2. Buying Process:

• Loop Until All Coupons Are Collected: Continue buying jeans
until you have one of each type of coupon in your set.

• Each time you buy a pair of jeans, increase the counter for the total
jeans bought by one.

• When you buy a pair of jeans, you get a coupon. Add this coupon
to your set of collected coupons.

• Check if you have collected all n different types of coupons by com-
paring the size of your set to n.

3. Repeat for Accuracy:

• To get a reliable estimate, repeat the entire buying process many
times (e.g., 100,000 times).

• Keep a running total of the number of jeans bought across all these
repetitions.

4. Calculate the Average:

• After completing all repetitions, calculate the average number of
jeans bought by dividing the total number of jeans bought by the
number of repetitions.

5. Output the Result:

• The average number of jeans bought from the repeated simulations
gives you a good estimate of how many pairs of jeans you would
typically need to buy before collecting all n coupons and getting a
free pair.

Let us walk through an example

1. Setup and Initialization Step:

• Imagine there are 10 different types of coupons.
• Start with total_jeans = 0 and an empty set coupons_collected.

2. Buying Jeans:

• You buy a pair of jeans and get a coupon. Add the coupon to your
set.

• Increase total_jeans by 1.



274CHAPTER 13. COMPUTATIONAL APPROACHES TO PROBLEM-SOLVING

• Check if your set now contains all 10 different coupons.

3. Continue Until Complete:

• Repeat the buying process, each time adding the coupon to your set
and increasing the total jeans count.

• Once you have all 10 types in your set, note the total number of jeans
bought for this repetition.

4. Repeat Many Times:

• To ensure accuracy, repeat this entire process (buying jeans, collect-
ing coupons) 100,000 times.

• Sum the total number of jeans bought over all repetitions.

5. Calculate Average:

• Divide the sum of all jeans bought by 100,000 to get the average
number of jeans you need to buy to collect all coupons.

By following these steps, you can estimate how many pairs of jeans you need
to buy before getting a free pair by collecting all the different coupons. This
method uses repetition and averaging to account for the randomness in coupon
distribution, providing a reliable estimate.

To implement a programmatic solution to calculate the expected number
of jeans you need to buy before getting a free one when there are n differ-
ent coupons, we can simulate the process and compute the average number of
purchases. Here is a Python implementation using simulation:

import random

def expected_jeans(n, num_simulations=100000):
total_jeans = 0

for _ in range(num_simulations):
coupons_collected = set()
jeans_bought = 0

while len(coupons_collected) < n:
jeans_bought += 1
coupon = random.randint(1, n) # simulate getting a

random coupon
coupons_collected.add(coupon) # add the coupon to

the set

total_jeans += jeans_bought

expected_jeans = total_jeans / num_simulations
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return expected_jeans

# Example usage:
n = 10 # number of different coupons
expected_num_jeans = expected_jeans(n)
print(f"Expected number of jeans before getting a free one with

{n} coupons: {expected_num_jeans}")

Explanation:

1. Function expected_jeans(n, num_simulations):

• n: Number of different coupons.
• num_simulations: Number of simulations to run to estimate the

expected value. More simulations lead to a more accurate estimation.

2. Simulation Process:

• For each simulation, initialize an empty set coupons_collected to
keep track of collected coupons and a counter jeans_bought to
count the number of jeans purchased.

• Loop until all n different coupons are collected:
– Simulate buying a pair of jeans (jeans_bought increments).
– Simulate getting a random coupon (from 1 to n).
– Add the coupon to coupons_collected if it has not been col-

lected before.
• After collecting all n coupons, record the total number of jeans

bought in total_jeans.

3. Calculate Expected Value:

• Compute the average number of jeans bought across all simulations
(total_jeans / num_simulations).

• Return the estimated expected number of jeans.

4. Example Usage:

• Set n to the number of different coupons (e.g., 10).
• Call expected_jeans(n) to get the estimated expected number of

jeans before getting a free one.

The code will print the expected number of jeans you need to buy before col-
lecting all 10 coupons for each of the three runs. Each run provides an esti-
mate based on 100,000 simulations, which ensures the reliability of the results.
Running the code multiple times ensures that the results are consistent and
demonstrate the reliability of the simulation approach.
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Let us run the simulation three times and compare the results with the
theoretical expectation for the Coupon problem. The theoretical expected
number of purchases required to collect all n coupons is given by: Hn =
n
(
1
1 + 1

2 + · · ·+ 1
n

)
, where Hn is the n-th harmonic number. Here are the

results from three runs of the given simulation code for 10 coupons:

Run 1: Expected number of jeans before getting a free one with 10
coupons: 29.2446

Run 2: Expected number of jeans before getting a free one with 10
coupons: 29.3227

Run 3: Expected number of jeans before getting a free one with 10
coupons: 29.3175

The theoretically expected number of jeans needed is approximately 29.29.
The results from the three runs are all very close to this theoretical value.

• Run 1: 29.2446

• Run 2: 29.3227

• Run 3: 29.3175

This demonstrates that the simulation results are consistent with the theoretical
expectation for the Coupon problem.

The approach we used to solve the Coupon problem is an instance of Monte
Carlo simulation to estimate the expected value, making it suitable for scenarios
where an analytical solution is complex or impractical. Do more simulations
by adjusting num_simulations to balance between computation time and
accuracy of the estimated value. More simulations generally provide a more
precise estimation of the expected value.

13.5.4.2 Problem-2 (Hat Problem)

n people go to a party and drop off their hats to a hat-check person. When
the party is over, a different hat-check person is on duty and returns the n hats
randomly back to each person. What is the expected number of people who get
back their hats?

To solve this problem, we can simulate the process of randomly distribut-
ing hats and count how many people get their own hats back. By running the
simulation many times, we can calculate the expected number of people who
receive their own hats. Let us start with an algorithmic solution in plain English.

Algorithmic Solution:

1. Initialization:

• Set up variables to count the total number of correct matches across
all simulations.
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• Define the number of simulations to ensure statistical reliability.
• Define the number of people n.

2. Simulate the Process:

• For each simulation:
– Create a list of hats representing each person.
– Shuffle the list to simulate random distribution.
– Count how many people receive their own hat.
– Add this count to the total number of correct matches.

3. Calculate the Expected Value:

• Divide the total number of correct matches by the number of simu-
lations to get the average.

4. Output the Result:

• Print the expected number of people who get their own hats back.

Let us walk through an example

1. Setup and Initialization Step:

• Suppose there are 5 people at the party.
• Initialize total_correct to 0, which will keep track of the total num-

ber of people who receive their own hat across multiple simulations
and num_simulations to 100,000.

2. Simulate the Process:

• For each simulation:
– Create a list of hats [1, 2, 3, 4, 5].
– Shuffle the list, e.g., [3, 1, 5, 2, 4].
– Initialize correct to 0.
– Check each person:

∗ Person 1 (hat 3) - not correct.
∗ Person 2 (hat 1) - not correct.
∗ Person 3 (hat 5) - not correct.
∗ Person 4 (hat 2) - not correct.
∗ Person 5 (hat 4) - not correct.

– Add correct (which is 0 for this run) to total_correct.

3. Repeat Many Times:

• Repeat the simulation 100,000 times, each time shuffling the hats and
counting how many people get their own hats back.
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• Sum the number of correct matches across all simulations.

4. Calculate Average:

• Divide total_correct by 100,000 to get the average number of peo-
ple who receive their own hat.

By following these steps, you can determine the expected number of people
who will get their own hats back after the hats are randomly redistributed. In
the case of this specific problem, the expected number will be approximately
1, meaning on average, one person will get their own hat back. This is due
to the nature of permutations and the expectation of fixed points in a random
permutation. This solution uses a Monte Carlo simulation approach to estimate
the expected number of people who get their own hats back, which is a practical
way to solve problems involving randomness and expectations.

Here is a Python solution that implements this algorithm:

import random

def simulate_hat_problem(n, num_simulations):
total_correct = 0

for _ in range(num_simulations):
hats = list(range(n))
random.shuffle(hats)
correct = sum(1 for i in range(n) if hats[i] == i)
total_correct += correct

expected_value = total_correct / num_simulations
return expected_value

# Example usage
n = 10 # Number of people at the party
num_simulations = 100000 # Number of simulations to run
expected_hats_back = simulate_hat_problem(n, num_simulations)

print(f"The expected number of people who get their own hats
back is approximately: {expected_hats_back}")

Explanation:

1. Initialization:

• total_correct keeps track of the total number of people who get
their own hats back across all simulations.
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• num_simulations is the number of times we repeat the experiment
to get a reliable average.

2. Simulation:

• For each simulation, a list hats is created, representing the hats each
person initially has.

• The random.shuffle(hats) function randomly shuffles the list to
simulate the random distribution of hats.

• We then count how many people receive their own hat by checking
if the index matches the value in the list.

3. Calculate the Expected Value:

• The total_correct is divided by num_simulations to find the
average number of people who get their own hats back.

4. Output:

• The expected number is printed out, showing the average number of
people who end up with their own hats.

Here are the results from three runs of the given simulation code:

Run 1: The expected number of people who get their own hats back is
approximately: 1.00039

Run 2: The expected number of people who get their own hats back is
approximately: 1.00051

Run 3: The expected number of people who get their own hats back is
approximately: 0.99972

Across these three runs, the expected number of people who get their own hats
back consistently revolves around 1. This aligns with the theoretical expectation
that, on average, one person out of n will receive their own hat back in such a
random distribution scenario. This outcome demonstrates the robustness of the
Monte Carlo simulation approach for estimating expected values in problems
involving randomness.

R The success of randomized approaches often comes from their ability
to avoid worst-case patterns that deterministic algorithms might fall into.

The randomized approach plays a crucial role in modern problem-solving, lever-
aging probability and randomness to tackle challenges that defy straightforward
deterministic solutions. By embracing uncertainty and probabilistic outcomes,
randomized algorithms provide innovative solutions across various disciplines,
highlighting their relevance and effectiveness in addressing complex, real-world
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problems. This chapter explores the theoretical foundations, practical appli-
cations, and considerations of randomized approaches, equipping readers with
insights into their strategic deployment in diverse problem-solving scenarios.

13.6 Conclusion
Computational approaches to problem-solving include a diverse range of method-
ologies, each offering unique strategies to tackle complex challenges across vari-
ous domains. This chapter has explored several fundamental techniques: brute
force, divide-and-conquer, dynamic programming, greedy algorithms, and ran-
domized approaches. Understanding these strategies equips you with a toolkit
to address different problem classes effectively.

Brute Force: The brute-force approach is characterized by its simplicity and
exhaustive computation. By systematically checking every possible solution,
brute force ensures that the optimal solution is found. This method is well-
suited for problems with relatively small solution spaces, such as cracking pad-
locks or guessing passwords. However, for larger problem spaces, brute force can
become computationally prohibitive due to its high execution time and resource
demands.

Divide-and-Conquer: This approach improves efficiency over brute force by
breaking down complex problems into smaller, manageable sub-problems. The
divide-and-conquer strategy, as illustrated by merge sort, recursively divides a
problem into simpler components, solves each component, and then combines
the results. While this method often leads to significant reductions in time com-
plexity, it may incur additional overhead from recursive calls and the need for
additional memory to manage sub-problems.

Dynamic Programming: Dynamic programming enhances efficiency by ad-
dressing overlapping sub-problems and storing intermediate results to avoid re-
dundant computations. For instance, solving the Fibonacci series with dynamic
programming involves memoizing previously computed results to reduce com-
plexity. This approach trades off increased space complexity for reduced time
complexity, making it particularly effective for optimization problems where so-
lutions depend on previously computed results.

Greedy Algorithms: Greedy algorithms focus on making the locally opti-
mal choice at each step, intending to achieve a global optimum. This method is
beneficial for problems like scheduling tasks within a limited timeframe. Greedy
algorithms are valued for their simplicity and efficiency, but they can sometimes
fail to find the globally optimal solution due to their focus on immediate gains
rather than long-term strategies.

Randomized Approaches: Randomized approaches introduce elements of
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chance into problem-solving, providing probabilistic solutions to problems that
might otherwise be deterministic. Examples include scenarios like coupon col-
lecting or hat-checking problems. These methods offer a way to explore so-
lution spaces in a non-deterministic manner, which can be particularly useful
when exact solutions are impractical or when dealing with complex stochastic
phenomena.

In summary, each computational approach offers distinct advantages and
limitations. Brute force guarantees optimal solutions but may be impracti-
cal for large problems. Divide-and-conquer and dynamic programming provide
efficient solutions through systematic problem breakdown and memoization, re-
spectively. Greedy algorithms offer quick solutions but may not always achieve
the best outcome, while randomized approaches can explore complex solution
spaces effectively. By understanding these methodologies, you can better select
the appropriate strategies for solving diverse computational problems across
various disciplines.

Here are some highly recommended books that provide a solid foundation
for the related concepts that we discussed in this chapter. [1] Often referred to
as CLRS, this classic textbook covers a wide array of algorithms and problem-
solving techniques. Each approach is explained with rigorous theoretical in-
sights, pseudocode, and practical applications. It is essential for anyone seeking
to master algorithm design. [2] Skiena’s manual is more application-focused,
blending theory with practical examples. It’s highly recommended for its prob-
lem catalog and real-world examples of each problem-solving strategy. [3] This
book is an excellent introduction to algorithmic thinking and covers multiple
paradigms in algorithm design. It focuses on visual and intuitive explanations,
supported by thorough implementations. [5] This book emphasizes the design,
analysis, and implementation of algorithms, with sections dedicated to each
paradigm. It is known for a good balance between theory and implementation
exercises. [4] This book takes a more theoretical approach to algorithms, ex-
plaining the fundamental principles behind each strategy. It is ideal for a deeper
understanding of algorithmic efficiency and complexity. [6] This book focuses
on the thought process behind solving computational problems with algorithms,
providing exercises and real-world examples to explain dynamic programming
and greedy approaches. [7] This book is the go-to resource for learning about
randomized algorithms. It delves deep into the theory and analysis of random-
ness in computational problem-solving and is considered a benchmark reference
for this approach. [8] This book offers a comprehensive introduction to the
use of probability and randomness in the design and analysis of algorithms. It
covers essential topics such as randomized algorithms, probabilistic analysis of
algorithms, Markov chains, and more. The book is well-regarded for its clear
explanations and practical examples, blending theoretical concepts with hands-
on applications. It is ideal for readers interested in understanding how ran-
domness can be harnessed to create efficient algorithms, especially in complex
computational scenarios. It is often recommended for advanced undergraduate
and graduate courses in computer science. [9] This book provides a practical
approach to learning algorithms through Python. It focuses on teaching the
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fundamentals of algorithmic problem-solving while leveraging Python’s simplic-
ity and power. The book covers essential topics like sorting, searching, graph
algorithms, and dynamic programming, with a special emphasis on implemen-
tation. Each algorithm is explained clearly and intuitively, making it accessible
for beginners and useful for intermediate programmers who want to improve
their algorithmic thinking. It is particularly recommended for those who want
to deepen their understanding of algorithms using Python as a learning tool.

13.7 Exercises
1. Design and implement an algorithm to solve the subset sum problem using

a brute-force approach.

2. Write a brute-force algorithm to solve the knapsack problem.

3. Use the brute-force approach to find the maximum element in an array
by iterating through each element and keeping track of the largest value
encountered. This approach requires examining each element one by one.

4. Use brute force to find the contiguous subarray with the maximum sum
by examining all possible subarrays and calculating their sums. Compare
the sums to identify the maximum.

5. Use the brute-force approach to generate all permutations of a given string
by systematically swapping characters and exploring all possible arrange-
ments. This involves recursively generating permutations and collecting
them.

6. Use brute force to find all pairs of elements in an array that sum up to
a specific target value by examining every possible pair of elements. This
involves iterating through all element pairs and checking their sums.

7. Use brute force to find the longest common substring between two strings
by checking all possible substrings of one string against all substrings of
the other. This involves generating and comparing substrings from both
strings.

8. Use brute force to find the element that appears most frequently in an
array by counting the occurrences of each element and selecting the one
with the highest count. This involves iterating through the array and
maintaining a count for each element.

9. Use brute force to find all unique triplets in an array that add up to zero
by checking every combination of three elements. This involves iterating
through all possible triplets and verifying their sums.

10. Use brute force to find the longest palindromic substring in a given string
by checking every possible substring and verifying if it is a palindrome.
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This involves generating substrings and checking for palindrome proper-
ties.

11. Use brute force to find all possible sums that can be formed from subsets of
an array by generating all subsets and calculating their sums. This involves
iterating through all possible subsets and summing their elements.

12. Use divide and conquer to count the number of inversions in an array,
where an inversion is a pair (i, j) such that i < j and array[i] > array[j].
Divide the array into two halves, recursively count inversions in each half,
and merge the results to count inversions that span across the halves.

13. Use divide and conquer to find the k-th largest element in an unsorted
array. Partition the array around a pivot, recursively search the partition
that contains the k-th largest element, and adjust k accordingly until the
element is found.

14. Use divide and conquer to find the majority element in an array, where
the majority element appears more than n

2 times. Divide the array into
two halves, find the majority element in each half, and combine the results
to identify if there is a majority element in the entire array.

15. Use divide and conquer to find the maximum value in a submatrix of
a 2D matrix. Divide the matrix into smaller submatrices, compute the
maximum values for these submatrices, and merge the results to find the
maximum in the specified range.

16. Use divide and conquer to find the longest common prefix among an array
of strings. Divide the list into two halves, recursively determine the longest
common prefix for each half, and combine these prefixes to find the longest
common prefix for the entire array.

17. Use divide and conquer to find the missing number in an array with in-
tegers from 1 to n + 1. Divide the array into two parts, find the missing
number in each part recursively, and combine the results to identify the
missing number.

18. Use divide and conquer to find the element that appears most frequently
in an array. Divide the array into two halves, find the most frequent
element in each half, and combine these results to determine the overall
most frequent element.

19. Use divide and conquer to find the closest pair of points among a set of
points. Divide the set into two halves, recursively find the closest pairs
in each half, and check the distance of points near the dividing line to
combine results.

20. Use divide and conquer to find the maximum sum of elements in an array
such that no two elements are adjacent. Divide the array into segments,
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compute the maximal sum for each segment, and ensure that no adjacent
elements are selected across segments.

21. Use divide and conquer to identify all duplicate elements in an array.
Divide the array into smaller parts, find duplicates in each part, and merge
these results to list all duplicates.

22. Use divide and conquer to find the contiguous subarray with the maximum
product in an array. Divide the array into segments, compute the maxi-
mum product for each segment, and combine results, including products
that span across segments.

23. Use divide and conquer to find the most common substring of a specified
length in a string. Divide the string into substrings of the specified length,
count occurrences of each substring, and combine results to identify the
most frequent one.

24. Apply dynamic programming to determine the number of ways to climb
a staircase with n steps, where you can take 1 or 2 steps at a time. This
method builds solutions incrementally by storing the number of ways to
reach each step.

25. Solve the problem of finding the minimum number of coins required for a
given amount by using dynamic programming to keep track of the mini-
mum coins needed for each value up to the target amount.

26. Use dynamic programming to find the longest subsequence common to
two strings by constructing a table that stores the length of the LCS for
each pair of indices in the strings.

27. Compute the minimum number of operations required to transform one
string into another using dynamic programming, which stores the mini-
mum edit distances between substrings in a matrix.

28. Count the number of palindromic substrings in a given string by applying
dynamic programming to track substrings that are palindromes and build
up from smaller substrings.

29. Count the number of distinct ways to travel from the top-left to the
bottom-right corner of a grid by using dynamic programming to store
the number of ways to reach each cell.

30. Calculate the number of unique paths in an m x n grid from the top-left
to the bottom-right corner by applying dynamic programming to count
paths from previous cells.

31. Determine if an array can be split into two subsets with equal sum by
using dynamic programming to find subset sums up to half of the total
sum.
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32. Maximize the amount of money robbed from a series of houses by using
dynamic programming to decide whether to rob each house while avoiding
adjacent ones.

33. Determine if a string can be segmented into valid dictionary words using
dynamic programming to store the results of possible segmentations.

34. Minimize the number of trials needed to determine the highest floor from
which an egg can be dropped without breaking, using dynamic program-
ming to evaluate the minimum trials needed for each floor.

35. Calculate the number of valid parentheses combinations using dynamic
programming to build solutions from smaller cases.

36. Develop a greedy algorithm for selecting the maximum number of activi-
ties that do not overlap, given a set of activities with start and end times.
Example: If activities are (1, 3), (2, 5), (4, 6), (6, 8), (5, 9), (8, 10), selecting
(1, 3), (4, 6), and(6, 8) yields the maximum number of non-overlapping ac-
tivities.

37. Develop a greedy algorithm for the problem ”Given weights and values
of items, maximize the value of items in a knapsack of limited capacity,
allowing fractional parts of items”.
Example: If items have values (60, 100, 120) and weights (10, 20, 30) with
a capacity of 50, the optimal solution includes items with ratios 6, 5, and
4. The knapsack would contain 10 weight units of the first item, 20 of the
second, and 20 of the third (only a part), maximizing the value.

38. Develop a greedy algorithm to minimize the cost of merging files from a
sequence of files
Example: Files with sizes [2, 3, 4, 5] would merge files [2, 3], then [5, 4],
and finally [7] for an optimal merge cost.

39. Develop a greedy algorithm to determine the shortest path for a courier
to deliver packages to multiple locations.
Example: Deliveries to locations [A, B, C, D] with distances [2 km, 5 km,
3 km, 4 km] would follow the path [A -> C -> D -> B].

40. Develop a greedy algorithm to manage traffic flow by optimizing traffic
light timings at intersections.
Example: Intersections with traffic volumes [500 vehicles/hour, 300 vehi-
cles/hour, 400 vehicles/hour, 600 vehicles/hour] would adjust lights in the
order [4, 1, 3, 2].

41. Write a Python function to simulate flipping a fair coin once. Print
”Heads” or ”Tails” based on the outcome.

42. Implement a Python function to simulate rolling a six-sided die once. Print
the number rolled.
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43. Implement a Python script that simulates a random walk on a one-dimensional
number line starting at position 0. Print the final position after 10 steps.

44. Develop a Python program to estimate the area under the curve y = x2

for x in the range [0, 1] using a Monte Carlo simulation with 1000 random
points. Print the estimated area.

45. Design and implement an algorithm to simulate flipping a fair coin mul-
tiple times. Count the number of heads and tails obtained. Repeat the
simulation for different numbers of flips and observe how the ratio of heads
to tails converges to 0.5 with increasing flips.

46. Develop a Monte Carlo simulation to approximate the value of a definite
integral. Randomly sample points within the integration bounds and use
the average of function evaluations at these points to estimate the integral.

47. Implement a random walk simulation in a 2D grid starting from the origin
(0, 0). At each step, randomly move up, down, left, or right. Visualize the
path taken using Matplotlib or another plotting library. Experiment with
different numbers of steps and analyze how far the walk typically gets
from the origin.

48. Design a function in Python to randomly sample k elements from a list
of integers or strings. Ensure that each element has an equal probability
of being selected. Test the function with different lists and analyze the
randomness and uniformity of the samples.

49. Implement a function to shuffle a deck of 52 playing cards using a ran-
domized approach. Ensure that each permutation of the deck has an equal
probability of occurring. Verify the correctness of your shuffle algorithm
by checking the randomness of card distributions.

50. Implement a Python function to simulate rolling two dice and calculate
the sum of the values. Repeat the simulation multiple times and plot a
histogram of the results. Analyze the distribution of sums using random
sampling.

51. Implement a Python function to estimate the mean of a large dataset
using randomized sampling. Compare the accuracy and efficiency of your
estimation with traditional methods like computing the exact mean.

52. Implement a Python function to generate random permutations of a list
of elements. Ensure that each permutation is equally likely to occur. Test
your function with different input sizes and analyze the randomness of the
generated permutations.
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Chapter 14

The Coding Darbaar

“Talent is a pursued interest. Anything that you’re willing to practice, you can
do.”

- Bob Ross

“Success is the sum of small efforts, repeated day in and day out.”
- Robert Collier

To improve your problem-solving skills and instill a sense of out-of-box
thinking in you, we have created some spine-chilling problems! You
can solve them hands-on and submit at https://www.hackerrank.com/
the-coding-darbaar. Some sample problems are included in this chapter.

14.1 The Haunted Chamber

14.1.1 Problem description
Walking by the backyard of your department, you stumble upon a large room
that seems to be a haunted chamber. You decide to inhabit it as a hideaway
whenever you are late for attending programming classes as the professor is
too strict with attendance. Being good at mathematics, you wish to find the
actual cost to paint the interior side (walls and the door) of the room leaving the
windows unpainted. The front wall has a door and the two sidewalls have one
window each (not necessarily of the same size). Input the dimensions (length,
breadth, and height in meters) of the room and the two windows (length and
height in meters) and then determine the painting expenses. It is known that
one litre of paint can cover 6 square metres and the paint costs Rs.500/litre.
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14.2 The Strict Librarian

14.2.1 Problem description
A library levies a fine for every book returned late. For the first 10 days, the
fine is Rs. 0.5 per day, for the next 10 days, the fine is Re. 1 per day and for
the next 10 days, the fine is Rs. 2 per day. If you return a book after 30 days,
the membership will be canceled. Input the number of days the member is late
to return the book and display the fine or the appropriate message.

14.3 The direction kiosk

14.3.1 Problem description
You are the computer programmer of a big firm which has recently shifted to
a new 7-storey building. To help the clients easily locate the rooms, your boss
has assigned you the task of setting up an automated direction kiosk that will
accept the room number as input and output the directions to reach the room.
The room numbers are three-digit numbers and follow a fixed pattern. The first
digit denotes the floor and the last two digits indicate the room number on that
floor. For example, room number 207 denotes the 7th room on the second floor
and room number 015 denotes the 15th room on the ground floor (zeroth floor).
Further, on a floor, odd-numbered rooms are on the left and even-numbered
rooms on the right and there are 16 rooms on every floor. The figure below
shows the floor plan of the 7th floor and all the floors follow this plan.

701

710

708 703 705 707

715 713 711 709

702

716

704

714712

706

stair case

In the figure, the arrow inside the ”staircase box” indicates the direction that
the client faces after climbing up the stairs.

14.4 The Room biller

14.4.1 Problem description
A hotel has the following room pricing policy:
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• 1 or 2 persons:- Rs. 850 (base tariff)

• 3 or 4 persons:- Base tariff plus Rs. 150 for each additional person (1 or
2)

• greater than 4:- New rooms to be allocated at a maximum of 4 persons
per room

For company business stay, there is a 15% discount. If at least one of the
customers is over 60 years of age, there is a 20% discount. A customer does not
receive both discounts. The discount is given for the entire group of persons (not
on per per-room basis). Your job is to determine the room rent after getting
the necessary inputs.

14.5 The Generalized Fibonacci

14.5.1 Problem description
A generalized Fibonacci sequence is a sequence of numbers such that from
the third number, each number is the sum of the preceding two numbers. For
example, 2 5 7 12 19 is a generalized Fibonacci sequence. Given a sequence
of numbers, decide whether the sequence is a generalized Fibonacci sequence or
not.

14.6 The Currency changer

14.6.1 Problem description
In the Indian currency system, the denominations available are 5, 10, 20, 50,
100, 200 and 500. (For the moment, you may forget about coins!!!) To make
a sum of 1000, you can use five 200 rupee notes or ten 100 rupee notes, or
two 500 rupee notes (and many other combinations are possible). But the last
option takes the least number of currency notes. Given the available denomina-
tions and the sum (input from the user), print how to make the sum using the
available denominations with the least number of currency notes. Assume the
sum is an integer and you have an unlimited supply of currency notes of each
denomination.

14.7 The Coin Heap Game

14.7.1 Problem description
Two players start playing a board game. The game board consists of N heaps
arranged in a sequence, each containing a certain number of coins. The figure
shows such a board with 5 heaps.
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HEAP 1 HEAP 2 HEAP 3 HEAP 4 HEAP 5

7 coins 2 coins 4 coins 3 coins 5 coins

The players first toss a coin to decide who starts the game and also what end
(left or right) of the board, each player prefers. Once the game starts, the two
players move alternately from each end. When a player moves, he chooses a
heap from the chosen end (left or right) of the board, and removes the selected
heap of coins from it. The player should be consistent in the sense that if had
chosen the left end, he should continue removing coins from the left end only.
The game is over when the board is exhausted (no coins left). The player who
has collected the maximum number of coins wins the game. Input which player
between the two wishes to start the game and what end (left or right) he prefers,
and then declare the winner.

14.8 The Bad Strings

14.8.1 Problem description
Captain Hook has stolen from Jake his favourite ship “The Bucky”. To return
the ship, Mr. Hook wants Jake to solve a puzzle. The Captain gives Jake a list
of strings and wants him to determine the ”most bad” string in the list. The
”badness value” of a string str in the list is the count of strings that appear
before str in the list but that are lexicographically (alphabetically) larger than
str. If there is a tie for the most bad string, choose the alphabetically larger
one.

14.9 The Code classifier

14.9.1 Problem description
Every course in the 2019 scheme curriculum was identified by a ”course code”
with the following format:

• first two characters: dept which offers the course like CS, EC, MA (for
Maths), etc.

• third character: T(theory), L(lab), N(non credit), D(project based) and
Q(seminar)

• fourth character: year of study in which the course is offered. 2- second
year, 3 - third year, etc.

• last two characters: when interpreted as a two-digit integer tells whether
the course is offered in the odd (last two characters is an odd number),
even (last two characters is a non-zero even number) semester or in both
semesters (last character is a zero) of the year as indicated by fourth
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character. For example, if the last three characters are 205 it denotes a
course offered during the odd semester (05 is odd) of the second year (that
is the third semester). And if the last three characters are 110, it denotes
a course offered during both semesters (note that the last character is a
zero) of the first year (that is first two semesters).

Given a list of n course codes, come up with a classification of them. You
may consider only the following departments: CS, ES(Engineering Sciences),
PH(Physics), CH(Chemistry), MA(Math), and HU(Humanities).

Sample input

CST201 EST120 HUT200 CST404 CST306 CST207 CST308 CST402
PHT100 CSL201 CSL331 CSD334 HUN102

Sample output

CS dept
S3 2 theory courses 1 lab course
S5 1 lab course
S6 2 theory courses 1 project
S8 2 theory courses
Engg Sciences dept
S1 and S2 1 theory course
Humanities dept
S2 1 non credit course
S3 and S4 1 theory course
Physics dept
S1 and S2 1 theory course
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